• Title/Summary/Keyword: Focus Particle

Search Result 125, Processing Time 0.029 seconds

Development of particle focusing device to monitor various low pressure processes (다양한 조건의 저압 공정 모니터링을 위한 입자 집속 장치 개발)

  • Kim, Myungjoon;Kim, Dongbin;Kang, Sang-Woo;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2017
  • As semiconductor process was highly integrated, particle contamination became a major issue. Because particle contamination is related with process yields directly, particles with a diameter larger than half pitch of gate should be controlled. PBMS (Particle beam mass spectrometry) is one of powerful nano particle measurement device. It can measure 5~500 nm particles at ~ 100 mtorr condition in real time by in-situ method. However its usage is restricted to research filed only, due to its big device volume and high price. Therefore aperture changeable aerodynamic lenses (ACALs) which can control particle focusing characteristics by changing its aperture diameter was proposed in this study. Unlike conventional aerodynamic lenses which changes particle focusing efficiency when operating condition is changed, ACALs can maintain particle focusing efficiency. Therefore, it can be used for a multi-monitoring system that connects one PBMS and several process chambers, which greatly improves the commercialization possibility of the PBMS. ACALs was designed based on Stokes number and evaluated by numerical method. Numerical analysis results showed aperture diameter changeable aerodynamic lenses can focus 5 to 100 nm standard particles at 0.1 to 10 torr upstream pressure.

Is the Focus Particle -to in Korean a Concessive or an Additive Marker\ulcorner (한국어의 초점사 -도는 양보표지인가 역동표지인가\ulcorner)

  • 이예식
    • Language and Information
    • /
    • v.6 no.2
    • /
    • pp.15-32
    • /
    • 2002
  • These analyses can be roughly classified into two groups: the first argue that the delimiter -to is polysemous so that it delivers either additive or concessive meaning; the second contend that it is monosemous and only conveys emphatic or concessive meaning. The current analysis mainly focuses on its two roles with regard to focus and its meaning. On the basis of the findings, a different analysis is proposed that it serves as an indicator of the presence of a type of focus which is hosted mainly by the expression it attaches to. Furthermore, it is solely responsible for the additive force, and the seemingly relevant emphatic or concessive import is derivable from an emphatic or concessive illocutionary operator which is associated with the focus indicated by -to.

  • PDF

Numerical Study of Particle Motion and Particle Beam Formation Through a Critical Orifice (임계 오리피스를 통과한 입자의 운동특성과 입자 빔에 관한 수치적 연구)

  • Ahn, Jin-Hong;Ahn, Kang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1240-1247
    • /
    • 1999
  • Particle motion through a disk type critical orifice placed in a 3.0cm diameter chamber has been studied numerically. In the simulation, the velocity field is solved using Pantankar's SIMPLER algorithm for the compressible flow and convergence of the computation is confirmed if the mass source at each control volume is smaller than $10^{-7}$. The particle motion in the flow field is solved in Lagrangian method. The particle trajectories showed that the particles injected away from the center line are expanded rapidly. At lower pressures, this expansion phenomena are more dominant. At lower pressures, the clear difference in particle and air speed is showed all the way down to the exit plan. It was found that particles with Stokes number of ca.2.5 tend to focus close to the center line very well except the particles travelling near the wall. However, particles with Stokes number greater than ca.2.5 show a tendency to cross the center line.

Energy-Aware Virtual Data Center Embedding

  • Ma, Xiao;Zhang, Zhongbao;Su, Sen
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.460-477
    • /
    • 2020
  • As one of the most significant challenges in the virtual data center, the virtual data center embedding has attracted extensive attention from researchers. The existing research works mainly focus on how to design algorithms to increase operating revenue. However, they ignore the energy consumption issue of the physical data center in virtual data center embedding. In this paper, we focus on studying the energy-aware virtual data center embedding problem. Specifically, we first propose an energy consumption model. It includes the energy consumption models of the virtual machine node and the virtual switch node, aiming to quantitatively measure the energy consumption in virtual data center embedding. Based on such a model, we propose two algorithms regarding virtual data center embedding: one is heuristic, and the other is based on particle swarm optimization. The second algorithm provides a better solution to virtual data center embedding by leveraging the evolution process of particle swarm optimization. Finally, experiment results show that our proposed algorithms can effectively save energy while guaranteeing the embedding success rate.

Measurement of EUV (Extreme Ultraviolet) and electron temperature in a hypocycloidal pinch device for EUV lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.108-108
    • /
    • 2010
  • We have generated Ne-Xe plasma in dense plasma focus device with hypocycloidal pinch for extreme ultraviolet (EUV) lithography and investigated an electron temperature. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ne-Xe(30%) gas in accordance with pressure. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature of the hypocycloidal pinch plasma focus could be obtained by the optical emission spectroscopy (OES). The electron temperature has been measured by Boltzmann plot. The light intensity is proportion to the Bolzman factor. We have been measured the electron temperature by observation of relative Ne-Xe intensity. The EUV emission signal whose wavelength is about 6~16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD) and the line intensity has been detected by using a HR4000CG Composite-grating Spectrometer.

  • PDF

Nanoparticle Focusing with A Novel Converging-Diverging-Type Aerodynamic Lens (수축-발산형 공기역학렌즈를 이용한 초미세 나노 입자의 집속)

  • Lee, Kwang-Seung;Kim, Song-Kil;Lee, Dong-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.589-596
    • /
    • 2008
  • An orifice type of aerodynamic lens is generally used to focus nanoparticles. However, it is impossible to focus particles smaller than 10nm in air due to flow instability of fluid in a lens. In this study, we propose a new converging-diverging type of the aerodynamic lens capable of focusing particles of 5-50nm in air. Designing factors of the lens configurations is also extracted and explained in detail through a numerical simulation. It was demonstrated that the aerosols are delivered from the entrance to the downstream of the lens system with 90% transmission efficiency. The final beam diameters are shown to be more or less 1mm in the range of particle size.

Influence of Ne-Xe Gas Mixture Ratio on the Extreme Ultraviolet (EUV) Emission Measurement from the Coaxially Focused Plasma

  • Lee, Sung-Hee;Hong, Young-June;Choi, Duk-In;Uhm, Han-Sup;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.220-220
    • /
    • 2011
  • The Ne-Xe plasmas in dense plasma-focus device with coaxial electrodes were generated for extreme ultraviolet (EUV) lithography. The influence of gas mixture ratio, Ne-Xe (1, 10, 15, 20, 25, 30, 50%) mixture gas, on EUV emission measurement, EUV intensity and electron temperature in the coaxially focused plasma were investigated. An input voltage of 4.5 kV was applied to the capacitor bank of 1.53mF and the diode chamber was filled with Ne-Xe mixture gas at a prescribed pressure. The inner surface of the cylindrical cathode was lined by an acetal insulator. The anode was made of tin metal. The EUV emission signal of the wavelength in the range of 6~16 nm has been detected by a photo-detector (AXUV-100 Zr/C, IRD). The visible emission line was also detected by the composite-grating spectrometer of the working wavelength range of 200~1100 nm (HR 4000CG). The electron temperature is obtained by the optical emission spectroscopy (OES) and measured by the Boltzmann plot with the assumption of local thermodynamic equilibrium (LTE).

  • PDF

Basics of particle therapy II: relative biological effectiveness

  • Choi, Jin-Hyun;Kang, Jin-Oh
    • Radiation Oncology Journal
    • /
    • v.30 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In the previous review, the physical aspect of heavy particles, with a focus on the carbon beam was introduced. Particle beam therapy has many potential advantages for cancer treatment without increasing severe side effects in normal tissue, these kinds of radiation have different biologic characteristics and have advantages over using conventional photon beam radiation during treatment. The relative biological effectiveness (RBE) is used for many biological, clinical endpoints among different radiation types and is the only convenient way to transfer the clinical experience in radiotherapy with photons to another type of radiation therapy. However, the RBE varies dependent on the energy of the beam, the fractionation, cell types, oxygenation status, and the biological endpoint studied. Thus this review describes the concerns about RBE related to particle beam to increase interests of the Korean radiation oncologists' society.

Electrocatalyst for the Oxygen Reduction Reaction: from the Nanoscale to the Macroscale

  • Chung, Dong Young;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.65-72
    • /
    • 2014
  • The use of nanoscale electrocatalysts is a promising strategy for achieving high catalyst activity due to their large surface area. However, catalyst activity is not directly correlated to particle size. To understand this discrepancy, many studies have been conducted, but a full understanding has still not been achieved, despite the importance of particle size effects in designing an active catalyst. In this review, we focus on the discussion of particle size effects on the oxygen reduction reaction, and also discussed the nanoscale design beyond the nanoparticle to the meso and macroscale design.

The Effect of Carbonate Particle Size Distributions on the Thickness Change of MCFC Electrolyte Matrix (전해질 입자크기에 따른 용융탄산염 연료전지 전해질 지지체의 두께변화에 관한 연구)

  • 이형근;김남진;이덕열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.384-393
    • /
    • 1998
  • A mixed powder of electrolyte and matrix support materials with a proper proportion was used for the fabrication of an electrolyte matrix sheet. The purpose of this study is to reduce the large change in MCFC cell thickness occurring in the initial start-up period when separate sheets of electrolyte and support are used. A focus was put on how small the carbonate particles could be made. The particle size of the carbonate powder was controlled by ball milling and the distribution was measured using a particle size analyser. The thickness change was reduced to 20% by this approach, which could be compared to 27% observed in a conventional cell. The thickness changes of electrolyte matrix have linear relation sizes of carbonate powders.

  • PDF