DOI QR코드

DOI QR Code

Basics of particle therapy II: relative biological effectiveness

  • Choi, Jin-Hyun (Department of Radiation Oncology, Kyung Hee University School of Medicine) ;
  • Kang, Jin-Oh (Department of Radiation Oncology, Kyung Hee University School of Medicine)
  • Received : 2011.09.28
  • Accepted : 2011.12.02
  • Published : 2012.03.31

Abstract

In the previous review, the physical aspect of heavy particles, with a focus on the carbon beam was introduced. Particle beam therapy has many potential advantages for cancer treatment without increasing severe side effects in normal tissue, these kinds of radiation have different biologic characteristics and have advantages over using conventional photon beam radiation during treatment. The relative biological effectiveness (RBE) is used for many biological, clinical endpoints among different radiation types and is the only convenient way to transfer the clinical experience in radiotherapy with photons to another type of radiation therapy. However, the RBE varies dependent on the energy of the beam, the fractionation, cell types, oxygenation status, and the biological endpoint studied. Thus this review describes the concerns about RBE related to particle beam to increase interests of the Korean radiation oncologists' society.

Keywords

References

  1. Fokas E, Kraft G, An H, Engenhart-Cabillic R. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta 2009;1796:216-29.
  2. Schardt D, Elsasser T, Schulz-Ertner D. Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 2010;82:383-425. https://doi.org/10.1103/RevModPhys.82.383
  3. Ito A, Nakano H, Kusano Y, et al. Contribution of indirect action to radiation-induced mammalian cell inactivation: dependence on photon energy and heavy-ion LET. Radiat Res 2006;165:703-12. https://doi.org/10.1667/RR3557.1
  4. Kanai T, Endo M, Minohara S, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys 1999;44:201-10. https://doi.org/10.1016/S0360-3016(98)00544-6
  5. Skarsgard LD. Radiobiology with heavy charged particles: a historical review. Phys Med 1998;14 Suppl 1:1-19.
  6. Ballarini F. From DNA radiation damage to cell death: theoretical approaches. J Nucleic Acids 2010;2010:350608.
  7. Lea DE. Actions of radiations on living cells. 2nd ed. London: Cambridge University Press; 1955.
  8. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.
  9. Chadwick KH, Leenhouts HP. A molecular theory of cell survival. Phys Med Biol 1973;18:78-87. https://doi.org/10.1088/0031-9155/18/1/007
  10. Dale RG, Jones B. The assessment of RBE effects using the concept of biologically effective dose. Int J Radiat Oncol Biol Phys 1999;43:639-45. https://doi.org/10.1016/S0360-3016(98)00364-2
  11. ICRP. 1990 recommendations of the International Commission on Radiological Protection. Ann ICRP 1991;21(1-3):1-201. https://doi.org/10.1016/0146-6453(91)90009-6
  12. ICRP. The 2007 recommendations of the International Commission on Radiological Protection: ICRP publication 103. Ann ICRP 2007;37(2-4):1-332
  13. Particle Therapy Co-operative Group (PTCOG). Patient statistics per end of 2010 [Internet]. PTCOG; 2011 [cited 2011 Mar 20]. Available from: http://ptcog.web.psi.ch/patient_statistics.html.
  14. Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 2002;53:407-21. https://doi.org/10.1016/S0360-3016(02)02754-2
  15. International Commission on Radiation Units and Measurements (ICRU). Prescribing, recording, and reporting protonbeam therapy. J ICRU 2007;7:1-210.
  16. Wambersie A. RBE, reference RBE and clinical RBE: applications of these concepts in hadron therapy. Strahlenther Onkol 1999;175 Suppl 2:39-43.
  17. Gueulette J, Slabbert JP, Bohm L, et al. Proton RBE for early intestinal tolerance in mice after fractionated irradiation. Radiother Oncol 2001;61:177-84. https://doi.org/10.1016/S0167-8140(01)00446-7
  18. Paganetti H, Gerweck LE, Goitein M. The general relation between tissue response to x-radiation (alpha/beta-values) and the relative biological effectiveness (RBE) of protons: prediction by the Katz track-structure model. Int J Radiat Biol 2000;76:985-98. https://doi.org/10.1080/09553000050051007
  19. Lee KB, Lee JS, Park JW, Huh TL, Lee YM. Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases. Exp Mol Med 2008;40:118-29. https://doi.org/10.3858/emm.2008.40.1.118
  20. Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006;65:1-7. https://doi.org/10.1016/j.ijrobp.2006.01.027
  21. Weyrather WK, Ritter S, Scholz M, Kraft G. RBE for carbon track-segment irradiation in cell lines of differing repair capacity. Int J Radiat Biol 1999;75:1357-64. https://doi.org/10.1080/095530099139232
  22. Takahashi A, Yano T, Matsumoto H, et al. Effects of accelerated carbon-ions on growth inhibition of transplantable human esophageal cancer in nude mice. Cancer Lett 1998;122:181-6. https://doi.org/10.1016/S0304-3835(97)00386-8
  23. Kitabayashi H, Shimada H, Yamada S, et al. Synergistic growth suppression induced in esophageal squamous cell carcinoma cells by combined treatment with docetaxel and heavy carbon-ion beam irradiation. Oncol Rep 2006;15:913-8.
  24. Koike S, Ando K, Oohira C, et al. Relative biological effectiveness of 290 MeV/u carbon ions for the growth delay of a radioresistant murine fibrosarcoma. J Radiat Res 2002;43:247-55. https://doi.org/10.1269/jrr.43.247
  25. Peschke P, Karger CP, Scholz M, Debus J, Huber PE. Relative biological effectiveness of carbon ions for local tumor control of a radioresistant prostate carcinoma in the rat. Int J Radiat Oncol Biol Phys 2011;79:239-46. https://doi.org/10.1016/j.ijrobp.2010.07.1976
  26. Kramer M, Weyrather WK, Scholz M. The increased biological effectiveness of heavy charged particles: from radiobiology to treatment planning. Technol Cancer Res Treat 2003;2:427-36. https://doi.org/10.1177/153303460300200507
  27. Furusawa Y, Fukutsu K, Aoki M, et al. Inactivation of aero bic and hypoxic cells from three different cell lines by accele rated (3)He-, (12)C- and (20)Ne-ion beams. Radiat Res 2000;154:485-96. https://doi.org/10.1667/0033-7587(2000)154[0485:IOAAHC]2.0.CO;2
  28. Kraft G. Tumor therapy with heavy charged particles. Prog Part Nucl Phys 2000;45:S473-544. https://doi.org/10.1016/S0146-6410(00)00112-5
  29. Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. Int J Radiat Oncol Biol Phys 2000;48:241-50.
  30. Suit H, DeLaney T, Goldberg S, et al. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol 2010;95:3-22. https://doi.org/10.1016/j.radonc.2010.01.015
  31. Belli M, Bettega D, Calzolari P, et al. Effectiveness of monoenergetic and spread-out bragg peak carbon-ions for inactivation of various normal and tumour human cell lines. J Radiat Res 2008;49:597-607. https://doi.org/10.1269/jrr.08052
  32. Schulz-Ertner D, Jakel O, Schlegel W. Radiation therapy with charged particles. Semin Radiat Oncol 2006;16:249-59. https://doi.org/10.1016/j.semradonc.2006.04.008
  33. Blakely EA, Chang PY. Late effects from hadron therapy. Radiother Oncol 2004;73 Suppl 2:S134-40.
  34. Ando K, Kase Y. Biological characteristics of carbon-ion therapy. Int J Radiat Biol 2009;85:715-28. https://doi.org/10.1080/09553000903072470
  35. George K, Durante M, Willingham V, et al. Biological effectiveness of accelerated particles for the induction of chromosome damage measured in metaphase and interphase human lymphocytes. Radiat Res 2003;160:425-35. https://doi.org/10.1667/RR3064
  36. Han ZB, Suzuki H, Suzuki F, et al. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells. J Radiat Res 1998;39:193-201. https://doi.org/10.1269/jrr.39.193
  37. Czub J, Banas D, Blaszczyk A, et al. Biological effectiveness of (12)C and (20)Ne ions with very high LET. Int J Radiat Biol 2008;84:821-9. https://doi.org/10.1080/09553000802389652
  38. Dale RG, Jones B, Carabe-Fernandez A. Why more needs to be known about RBE effects in modern radiotherapy. Appl Radiat Isot 2009;67:387-92. https://doi.org/10.1016/j.apradiso.2008.06.013
  39. Dasu A, Toma-Dasu I. What is the clinically relevant relative biologic effectiveness? a warning for fractionated treatments with high linear energy transfer radiation. Int J Radiat Oncol Biol Phys 2008;70:867-74. https://doi.org/10.1016/j.ijrobp.2007.07.2358
  40. Karger CP, Peschke P, Sanchez-Brandelik R, Scholz M, Debus J. Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implications. Int J Radiat Oncol Biol Phys 2006;66:1488-97. https://doi.org/10.1016/j.ijrobp.2006.08.045
  41. Suzuki M, Kase Y, Kanai T, Ando K. Correlation between cell killing and residual chromatin breaks measured by PCC in six human cell lines irradiated with different radiation types. Int J Radiat Biol 2000;76:1189-96. https://doi.org/10.1080/09553000050134429
  42. Elsasser T, Kramer M, Scholz M. Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys 2008;71:866-72. https://doi.org/10.1016/j.ijrobp.2008.02.037
  43. Uzawa A, Ando K, Koike S, et al. Comparison of biological effectiveness of carbon-ion beams in Japan and Germany. Int J Radiat Oncol Biol Phys 2009;73:1545-51. https://doi.org/10.1016/j.ijrobp.2008.12.021
  44. Gueulette J, Gregoire V, Octave-Prignot M, Wambersie A. Measurements of radiobiological effectiveness in the 85 MeV proton beam produced at the cyclotron CYCLONE of Louvainla-Neuve, Belgium. Radiat Res 1996;145:70-4. https://doi.org/10.2307/3579197
  45. Gerweck LE, Kozin SV. Relative biological effectiveness of proton beams in clinical therapy. Radiother Oncol 1999;50:135-42. https://doi.org/10.1016/S0167-8140(98)00092-9
  46. Blattmann H. Beam delivery systems for charged particles. Radiat Environ Biophys 1992;31:219-31. https://doi.org/10.1007/BF01214829
  47. Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. Computation of cell survival in heavy ion beams for therapy: the model and its approximation. Radiat Environ Biophys 1997;36:59-66. https://doi.org/10.1007/s004110050055
  48. Baek HJ, Kim TH, Shin D, et al. Radiobiological characterization of proton beam at the National Cancer Center in Korea. J Radiat Res 2008;49:509-15. https://doi.org/10.1269/jrr.08017
  49. Kim SS, Choo DW, Shin D, et al. In vivo radiobiological characterization of proton beam at the National Cancer Center in Korea: effect of the Chk2 mutation. Int J Radiat Oncol Biol Phys 2011;79:559-62. https://doi.org/10.1016/j.ijrobp.2010.08.010

Cited by

  1. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch vol.7, pp.None, 2012, https://doi.org/10.1186/1754-6834-7-22
  2. The study of hyaluronic acid compounds for neutron capture and photon activation therapies vol.9, pp.10, 2012, https://doi.org/10.2478/s11535-014-0329-7
  3. Effects of Ion Irradiation on Seedlings Growth Monitored by Ultraweak Delayed Luminescence vol.11, pp.12, 2012, https://doi.org/10.1371/journal.pone.0167998
  4. Development of Program for Relative Biological Effectiveness (RBE) Analysis of Particle Beam Therapy vol.28, pp.1, 2012, https://doi.org/10.14316/pmp.2017.28.1.11
  5. Characterization of a multilayer ionization chamber prototype for fast verification of relative depth ionization curves and spread-out-Bragg-peaks in light ion beam therapy vol.45, pp.5, 2012, https://doi.org/10.1002/mp.12866
  6. Characterization of a MLIC Detector for QA in Scanned Proton and Carbon Ion Beams vol.6, pp.2, 2012, https://doi.org/10.14338/ijpt-19-00064.1
  7. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer vol.12, pp.1, 2020, https://doi.org/10.3390/cancers12010163
  8. SRC Tyrosine Kinase Inhibitor and X-rays Combined Effect on Glioblastoma Cell Lines vol.21, pp.11, 2012, https://doi.org/10.3390/ijms21113917
  9. A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines vol.96, pp.11, 2012, https://doi.org/10.1080/09553002.2020.1820609
  10. Particle Therapy for Breast Cancer: Benefits and Challenges vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.662826
  11. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time vol.97, pp.9, 2021, https://doi.org/10.1080/09553002.2021.1948140