Browse > Article
http://dx.doi.org/10.3795/KSME-B.2008.32.8.589

Nanoparticle Focusing with A Novel Converging-Diverging-Type Aerodynamic Lens  

Lee, Kwang-Seung (부산대학교 대학원 기계공학부)
Kim, Song-Kil (부산대학교 대학원 기계공학부)
Lee, Dong-Geun (부산대학교 기계공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.32, no.8, 2008 , pp. 589-596 More about this Journal
Abstract
An orifice type of aerodynamic lens is generally used to focus nanoparticles. However, it is impossible to focus particles smaller than 10nm in air due to flow instability of fluid in a lens. In this study, we propose a new converging-diverging type of the aerodynamic lens capable of focusing particles of 5-50nm in air. Designing factors of the lens configurations is also extracted and explained in detail through a numerical simulation. It was demonstrated that the aerosols are delivered from the entrance to the downstream of the lens system with 90% transmission efficiency. The final beam diameters are shown to be more or less 1mm in the range of particle size.
Keywords
Aerodynamic Lens; Converging-Diverging; Nanoparticle Focusing; Single Particle Mass Spectrometer;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Wang, X. and McMurry, P. H., 2006a, “An Experimental Study of Nanoparticle Focusing with Aerodynamic Lenses,” Int. J. Mass Spectrom., Vol. 258, pp. 30-36   DOI   ScienceOn
2 Cheng, Y. S. and Dahneke, B. E., 1979, “Properties of Continuum Source Particle Beam. II. Beams Generated in Capillary Expansions,” J. Aerosol. Sci., Vol. 10, pp. 363-368   DOI   ScienceOn
3 Mallina, R. V., Wexler, A. S. and Johnston, M. V., 1997, “Particle Growth in High-speed Pparticle Beam Inlet,” J. Aerosol Sci., Vol. 28, pp. 223-238   DOI   ScienceOn
4 Mallina, R. V., Wexler, A. S. and Johnston, M. V., 1999, “High-speed Particle Beam Generation: Simple Focusing Mechanisms,” J. Aerosol Sci., Vol. 30, pp. 719-738   DOI   ScienceOn
5 Grujicic, M., Zhao, C. L., Tong, C., DeRosset, W. S. and Helfritch, D., 2004, “Analysis of the Impact Velocity of Powder Particles in the Cold-gas Dynamic-Spray Process,” Materials Sci. eng. A, Vol. 368, pp. 222-230   DOI   ScienceOn
6 Tafreshi, H. V., Benedek, G., Piseri, P., Vinati, S., Barborini, E. and Milani, P., 2002, “A Simple Nozzle Configuration for the Production of Low Divergence Supersonic Cluster Beam by Aerodynamic Focusing.” Aerosol Sci. Technol., Vol. 36, pp. 593-606   DOI   ScienceOn
7 Chen, S.-C., Tsai, C.-J., Wu, C.-H., Pui, D. Y. H, Onischuk, A. A. and Karasev V. V., 2007, “Particle Loss in a Critical Orifice,” J. Aerosol Sci., Vol. 38, pp. 939-949   DOI   ScienceOn
8 Reents, W. D. and Ge, Z., 2000, “Simultaneous Elemental Composition and Size Distribution of Submicron Particles in Real Time Using Laser Atomizer/Ionization Mass Spectrometry,” Aerosol Sci. Technol., Vol. 33, pp. 122-134   DOI   ScienceOn
9 Park, K., Lee, D., Rai, A., Mckherjee, D. and Zachariah, M. R., 2005, “Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation with Single Particle Mass Spectrometry,” J. Phys. Chem. B, Vol. 109, pp. 7290-7299   DOI   ScienceOn
10 Venkataraman, C. and Raymond, J., 1998, “Estimating the Lung Deposition of Particulate Polycyclic Aromatic Hydrocarbons Associated with Multimodal Urban Aerosols,” Inhal. Toxical., Vol. 10(3), pp. 183-204   DOI
11 Schreiner, J., Schild, U., Voigt, C. and Mauersberger, K., 1999, “Focusing of Aerosols into a Particle Beam at Pressures from 10 to 150 Torr,” Aerosol Sci. Technol., Vol. 31(5), pp. 373-382   DOI
12 Lee, K.-S., Cho, S.-W. and Lee, D., 2008, “Development and Experimental Evaluation of Aerodynamic Lens as an Aerosol Inlet of Single Mass Spectrometry,” J. Aerosol Sci., Vol. 39, pp. 287-304   DOI   ScienceOn
13 Zhang, X., Smith, K. A., Worsnop, D. R., Jimenez, J., Jayne, J. T. and Kolb, C. E., 2002, “A Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle System: Part I. An Individual Lens or Nozzle,” Aerosol Sci. Technol., Vol. 36, pp. 617-631   DOI   ScienceOn
14 Zhang, X., Smith, K. A., Worsnop, D. R., Jimenez, J. L., Jayne, J. T., Kolb, C. E., Morris, J. and Davidovits, P., 2004, “Numerical Characterization of Particle Beam Collimation: Part II Integrated Aerodynamic-Lens-Nozzle System,” Aerosol Sci. Technol., Vol. 38, pp. 619-638   DOI   ScienceOn
15 Wang, X. and McMurry, P. H., 2006b, “A Design Tool for Aerodynamic Lens Systems,” Aerosol Sci. Technol., Vol. 40, pp. 320-334   DOI   ScienceOn
16 Murphy, W. K. and Sears, G. W., 1964, “Production of Particulate Beams,” J. Appl. Phys., Vol. 35, pp. 1986-1987   DOI
17 Lee, D., Park, K. and Zachariah, M. R., 2005, “Determination of Size Distribution of Polydisperse Nanoparticles with Single Particle Mass Spectrometry: The Role of Ion Kinetic Energy.” Aerosol Sci. Technol., Vol. 39, pp. 162-169   DOI   ScienceOn
18 Liu, P., Ziemann, P. J., Kittelson, D. B. and McMurry, P. H., 1995a, “Generation Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions,” Aerosol Sci. Technol., Vol. 22, pp. 293-313   DOI
19 Carson, P. G., Johnston, M. V. and Wexler, A. S., 1997, “Laser Desorption/Ionization of Ultrafine Aerosol Particles,” Rapid Commun. Mass Spectrom., Vol. 11, pp. 993-996   DOI   ScienceOn
20 Noble, C. A. and Prather, K. A., 2000, “Real-time Single Particle Mass Spectrometry: a Historical Review of a Quarter Century of Chemical Analysis of Aerosols,” Mass Spectrom. Rev., Vol. 19, pp. 248-274   DOI   ScienceOn
21 Jen, T.-C., Pan, L., Li, L., Chen, Q. and Cui, W., 2006, “The Acceleration of Charged Nano-particles in Gas Stream of Supersonic de-Laval-type Nozzle Coupled with Static Electric Field,” Appl. Thermal eng., Vol. 26, pp. 613-621   DOI   ScienceOn
22 Zare, A., Abousli, O. and Ahmadi. G., 2007, “Computational Investigation of Airflow, Shock Wave and Nano-particle Separation in Supersonic and Hypersonic Impactors,” J. Aerosol Sci., Vol. 38, pp. 1015-1030   DOI   ScienceOn
23 Liu, P., Ziemann, P. J., Kittelson, D. B. and McMurry, P. H., 1995b, “Generation Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions,” Aerosol Sci. Technol., Vol. 22, pp. 314-324   DOI
24 Lee, D., Miller, A., Kittelson, D. and Zachariah, M. R., 2006, “Characterization of Metal-bearing Diesel Nanoparticles Using Single Particle Mass Spectrometry,” J. Aerosol Sci., Vol. 37(1), pp. 88-110   DOI   ScienceOn
25 Mahadevan, R., Lee, D., Sakurai, H. and Zachariah, M. R., 2002, “Measurement of Condensed-Phase Reaction Kinetics in the Aerosol Phase Using Single Particle Mass Spectrometry,” J. Phys. Chem. A, Vol. 106, pp. 11083-11092   DOI   ScienceOn
26 Huffman, J., Jayne, J., Drewnick, F., Aiken, A., Onasch, T., Worsnop, D. and Jimenez, J., 2005, “Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer,” Aerosol Sci. Technol., Vol. 39, pp. 1143-1163   DOI   ScienceOn
27 Wang, X., Kruis, F. E. and McMury, P. H., 2005a, “Aerodynamic Focusing of Nanoparticles: I. Guidelines for designing Aerodynamic Lenses for Nanoparticles,” Aerosol Sci. Technol., Vol. 39, pp. 611-623   DOI   ScienceOn
28 Wang, X., Gidwani, A., Girshick, S. L. and McMurry, P. H., 2005b, “Aerodynamic Focusing of Nanoparticles: II Numerical Simulation of Particle Motion through Aerodynamic Lenses,” Aerosol Sci. Technol., Vol. 39, pp. 624-636   DOI   ScienceOn