Browse > Article
http://dx.doi.org/10.5229/JECST.2014.5.3.65

Electrocatalyst for the Oxygen Reduction Reaction: from the Nanoscale to the Macroscale  

Chung, Dong Young (Center for Nanoparticle Research, Institute for Basic Science (IBS))
Sung, Yung-Eun (Center for Nanoparticle Research, Institute for Basic Science (IBS))
Publication Information
Journal of Electrochemical Science and Technology / v.5, no.3, 2014 , pp. 65-72 More about this Journal
Abstract
The use of nanoscale electrocatalysts is a promising strategy for achieving high catalyst activity due to their large surface area. However, catalyst activity is not directly correlated to particle size. To understand this discrepancy, many studies have been conducted, but a full understanding has still not been achieved, despite the importance of particle size effects in designing an active catalyst. In this review, we focus on the discussion of particle size effects on the oxygen reduction reaction, and also discussed the nanoscale design beyond the nanoparticle to the meso and macroscale design.
Keywords
Nanoparticle; Oxygen reduction reaction; particle size; fuel cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O.-H. Kim, Y.-H. Cho, S.H. Kang, H.-Y. Park, M. Kim, J.W. Lim, D.Y. Chung, M.J. Lee, H. Choe, Y.-E. Sung, Nat Commun., 4, 3473 (2013).
2 L. Su, W. Jia, C.M. Li, Y. Lei, ChemSusChem, 7, 361 (2014).   DOI   ScienceOn
3 S. Guo, S. Zhang, S. Sun, Angew. Chem. Int. Ed., 52, 8526 (2013).   DOI   ScienceOn
4 N. Jung, D.Y. Chung, J. Ryu, S.J. Yoo, Y.E. Sung, Nano Today, http://dx.doi.org/10.1016/ j.nantod.2014.06.006 (2014).   DOI   ScienceOn
5 K. Kinoshita, J. Electrochem. Soc., 137 (1990) 845-848.   DOI
6 K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, J. Phys. Chem. B, 109, 14433 (2005).   DOI
7 J. Greeley, J. Rossmeisl, A. Hellman, J.K. Norskov, Z. Phys. Chem., 221, 1209 (2007).   DOI   ScienceOn
8 G.A. Tritsaris, J. Greeley, J. Rossmeisl, J.K. Norskov, Catal. Lett., 141, 909 (2011).   DOI
9 M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, J. Am. Chem. Soc., 133, 17428 (2011).   DOI   ScienceOn
10 D.S. Kim, C. Kim, J.K. Kim, J.H. Kim, H.H. Chun, H. Lee, Y.T. Kim, J. Catal., 291, 69 (2012).   DOI   ScienceOn
11 C. Koenigsmann, E. Sutter, T.A. Chiesa, R.R. Adzic, S.S. Wong, Nano Lett., 12, 2013 (2012).   DOI   ScienceOn
12 S. Guo, S. Zhang, D. Su, S. Sun, J. Am. Chem. Soc., 135, 13879 (2013).   DOI   ScienceOn
13 J. Kibsgaard, Y. Gorlin, Z. Chen, T.F. Jaramillo, J. Am. Chem. Soc., 134, 7758 (2012).   DOI   ScienceOn
14 M.K. Debe, Nature, 486, 43 (2012).   DOI   ScienceOn
15 D.F. Van Der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X.F. Zhang, M.K. Debe, R.T. Atanasoski, N.M. Markovic, V.R. Stamenkovic, Nat. Mater., 11, 1051 (2012).   DOI
16 F.J. Perez-Alonso, D.N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I.E.L. Stephens, J.H. Nielsen, I. Chorkendorff, Angew. Chem. Int. Ed., 51, 4641 (2012).   DOI   ScienceOn
17 M. Nesselberger, M. Roefzaad, R. Faycal Hamou, P. Ulrich Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, Nat. Mater., 12, 919 (2013).   DOI   ScienceOn