• Title/Summary/Keyword: Flux treatment

Search Result 756, Processing Time 0.03 seconds

Ignition and Heat Release Rate of Wood-based Materials in Cone Calorimeter Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This study was performed to evaluate the burning characteristics of wood-based materials and the effect of surface treatment of fire retardant using cone calorimeter. Four types of wood-based materials, such as Plywood, Oriented Strand Board (OSB), Particle Board (PB) and Medium Density Fiberboard (MDF), were tested at a constant heat flux of $50kW/m^2$ to investigate the time to ignition, mass loss rate, heat release rate, effective heat of combustion, etc. In addition, each type of wood-based material was tested at the same heat flux after fire retardant treatment on the surface to evaluate the effect of this treatment on the burning characteristics. The surface treatment of fire retardant, by the amount of $110g/m^2$, delayed the time to ignition almost twice. However, it was indicated that heat release rate, mass loss rate, and effective heat of combustion were not significantly affected by fire retardants treatment for all types of wood-based materials.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.

A pilot study of high flux membrane process for responding to influent turbidity changes in reservoir water (호소수 탁도변화 대응을 위한 고플럭스 막여과공정의 Pilot 연구)

  • Kang, Joonseok;Seong, Jayeong;Yoo, Jewan;Kim, Hyungsoo;Lee, Jaekyu;Jeon, Minhyuk;Cheon, Jihoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.393-402
    • /
    • 2020
  • In the membrane process, it is important to improve water treatment efficiency to ensure water quality and minimize membrane fouling. In this study, a pilot study of membrane process using reservoir water was conducted for a long time to secure high flux operation technology capable of responding to influent turbidity changes. The raw water and DAF(Dissolved Air Flotation) treated water were used for influent water of membrane to analyze the effect of water quality on the TMP (Trans Membrane Pressure) and to optimize the membrane operation. When the membrane flux were operated at 70 LMH and 80 LMH under stable water quality conditions with an inlet turbidity of 10 NTU or less, the TMP increase rates were 0.28 and 0.24 kPa/d, respectively, with minor difference. When the membrane with high flux of 80 LMH was operated for a long time under inlet turbidity of 10 NTU or more, the TMP increase rate showed the maximum of 43.5 kPa/d. However, when the CEB(Chemically Enhanced Backwash) cycle was changed from 7 to 1 day, it was confirmed that the TMP increase rate was stable to 0.23 kPa/d. As a result of applying pre-treatment process(DAF) on unstability water quality conditions, it was confirmed that the TMP rise rates differed by 0.17 and 0.64 kPa/d according to the optimization of the coagulant injection. When combined with coagulation pretreatment, it was thought that the balance with the membrane process was more important than the emphasis on efficiency of the pretreatment process. It was considered that stable TMP can be maintained by optimizing the cleaning conditions when the stable or unstable water quality even in the high flux operation on membrane process.

Improvement of Fouling in Membrane Separation Process for Leachate Treatment using Ultrasound(I) : Analysis of Ultrasonic Parameters (초음파를 이용한 침출수 처리를 위한 막분리 공정의 막힘현상 개선(I) : 초음파의 영향인자 평가)

  • Kim, Seok-Wan;Lim, Jae-Lim;Lee, Jun-Geol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.197-206
    • /
    • 2006
  • This study evaluated the effect of ultrasonic irradiation on improving the flux and cleaning efficiency in membrane process which is widely applied for the treatment of landfill leachate. The experiments on improvement of membrane flux according to the types of membranes(hallowfiber microfiltration, MF and tubular ultrafiltration, UF) were performed with changing frequency($40{\sim}120$ kHz), intensity ($200{\sim}500$ W) and irradiation time of ultrasound as well us operation pressure($0.1{\sim}2.3kg/cm^2$). Membrane was fouled for the first 50 min with primary treated leachate and then the change in flux according to ultrasonic irradiation period was observed for 70 min. Parameters influenced to the recovery ratio corresponding the net flux on pure water and to the enhancement ratio applied after ultrasonic irradiation on the flux were analyzed. In same condition, the flux was improved in proportion to ultrasonic intensity while the improvement of flux was inversely proportional to ultrasonic frequency. The cleaning effect of membrane was delayed and reduced when operation pressure of membrane was high. The recovery ratio and enhancement ratio for $0.1{\mu}m$ MF membrane were 10% and 500%, respectively while those were maximized at $75{\sim}98%\;and\;40{\sim}50%$ for UF membrane for 10,000 and 100,000 MWCO, respectively. In conclusion, it was confirmed that ultrasonic cleaning using mechanical vibration is alternative to water or chemical cleaning for improving membrane flux.

Induction of Cell Death by Betulinic Acid through Induction of Apoptosis and Inhibition of Autophagic Flux in Microglia BV-2 Cells

  • Seo, Jeongbin;Jung, Juneyoung;Jang, Dae Sik;Kim, Joungmok;Kim, Jeong Hee
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.618-624
    • /
    • 2017
  • Betulinic acid (BA), a natural pentacyclic triterpene found in many medicinal plants is known to have various biological activity including tumor suppression and anti-inflammatory effects. In this study, the cell-death induction effect of BA was investigated in BV-2 microglia cells. BA was cytotoxic to BV-2 cells with $IC_{50}$ of approximately $2.0{\mu}M$. Treatment of BA resulted in a dose-dependent chromosomal DNA degradation, suggesting that these cells underwent apoptosis. Flow cytometric analysis further confirmed that BA-treated BV-2 cells showed hypodiploid DNA content. BA treatment triggered apoptosis by decreasing Bcl-2 levels, activation of capase-3 protease and cleavage of PARP. In addition, BA treatment induced the accumulation of p62 and the increase in conversion of LC3-I to LC3-II, which are important autophagic flux monitoring markers. The increase in LC3-II indicates that BA treatment induced autophagosome formation, however, accumulation of p62 represents that the downstream autophagy pathway is blocked. It is demonstrated that BA induced cell death of BV-2 cells by inducing apoptosis and inhibiting autophagic flux. These data may provide important new information towards understanding the mechanisms by which BA induce cell death in microglia BV-2 cells.

Cation Flux-Mediated Activation of P-Type ATPase in Helicobacter pylori

  • Yun, Soon-Kyu;Ki, Mi-Ran;Park, Jeong-Kyu;Lim, Wang-Jin;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.441-448
    • /
    • 2000
  • The production and cation flux-mediated activation of the P-type ATPase in Helicobacter pylori was investigated. Using the polymerase chain reaction (PCR), the proton pump genotype of H. pylori was found to be positive for both F-type and P-type ATPases. Yet, their production in terms of enzyme specific activity varied substantially depending on H. pylori strains, ranging over 3-fold. Its main constituent appeared to be the P-type ATPase pool, in contrast to other common bacterial compositions. Interestingly, the F-type ATPase was observed only when intact H. pyloricells were exposed to pH 4.5 or above (37$^{\circ}C$ for 1 h). In contrast, significant amounts of the P-type ATPase still remained after 1 h of cell treatment even at pH below 4.5. By enriching the acidic medium with RPMI(pH 3.0), the P-type ATPase was stabilized, accompained by inactivation of the F-type ATPase. Using H. pylori membrane vesicles, it was found that ammionia-mediated cation flux increased the rate of ATP hydrolysis by the P-type ATPase. Accordingly, these data strongly suggest that the P-type ATPase is involved or functions as an effective regulator for the cation flux across the H. pylori membrane, thereby reducing the risk of excess proton influx.

  • PDF

Application of a Membrane Bioreactor in Denitrification of Explosives Hydrolysates (Membrane Bioreactor를 이용한 폭발성 물질의 가수분해 부산물의 탈질과정에의 적용)

  • Zoh, Kyung-Duk
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • A bench-scale anoxic membrane bioreactor (MBR) system, consisting of a bioreactor coupled to a ceramic crossflow ultrafiltration module, was evaluated to treat a synthetic wastewater containing alkaline hydrolysis byproducts (hydrolysates) of RDX, The wastewater was formulated the same as RDX hydrolysates, and consisted of acetate, formate, formaldehyde as carbon sources and nitrite, nitrate as electron accepters. The MBR system removed 80 to 90% of these carbon sources, and approximately 90% of the stoichiometric amount of nitrate, 60% of nitrite. The reactor was also operated over a range of transmembrane pressures, temperatures, suspended solids concentration, and organic loading rate in order to maximize treatment efficiency and permeate flux. Increasing transmembrane pressure and temperature did not improve membrane flux significantly. Increasing biomass concentration in the bioreactor decreased the permeate flux significantly. The maximum volumetric organic loading rate was $0.72kg\;COD/m^3/day$, and the maximum F/M ratio was 0.50 kg N/kg MLSS/day and 1.82 kg COD/kg MLSS/day. Membrane permeate was clear and essentially free of bacteria, as indicated by heterotrophic plate count. Permeate flux ranged between 0.15 and $2.0m^3/m^2/day$ and was maintained by routine backwashing every 3 to 4 day. Backwashing with 2% NaOCl solution every fourth or fifth backwashing cycle was able to restore membrane flux to its original value.

Seven-year Survival Rate of On-line Hemodiafiltration

  • Yoon, Jung-Hwan;Kim, Nam-Ho
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • Conventional high-flux hemodialysis (HD) is not as good as normal kidney function. Morbidity and mortality rates of patients receiving HD are still very high. To increase mid-to-large molecule clearance by combining diffusion and convection, on-line hemodiafiltration (HDF) is required. The objective of this study was to compare long-term survival rate of patients treated with on-line HDF to those who received conventional high-flux HD by reviewing data from Chonnam National University Hospital (CNUH). We selected patients who attended the 'CUNH dialysis center' and agreed to participate in the study. Overall, 40 patients with ESRD switched from high flux HD to on-line HDF or started on-line HDF from August 2007 to December 2009. Additionally, a total of 42 patients receiving conventional high-flux HD during the same period were enrolled. We then reviewed long-term survival rate of patients receiving on-line HDF over the next seven years. When we compared survival rates for seven years, the survival rate of the group receiving on-line HDF was 65% (26/40) while that of the group receiving the conventional high-flux HD was 54.8% (23/42). Although the number of patients was small to see survival difference clearly by one specific dialysis modality, there was somewhat difference in survival rate between the two groups. Indicators such as anemia, calcium-phosphate metabolism, nutritional status, treatment adequacy, and hospitalization were also improved in the group receiving HDF. Overall, results of our study showed beneficial effects of on-line HDF on clinical outcomes and survival in chronic HD patients.

Effect of MWCNTs/PSf support layer on the performance of polyamide reverse osmosis membrane (탄소나노튜브가 첨가된 폴리술폰 지지체가 폴리아미드 역삼투막의 성능에 미치는 영향)

  • Min, Choong-Sik;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • In this study, a MWCNT(multi-wall carbon nanotube) was added to polysulfone(PSf) support layer to improve flux of TFC(thin film composite) RO(reverse osmosis) membrane. Two different kinds of MWCNT were used. Surfaces of some MWCNTs were modified hydrophilically through acid treatment, while those of other MWCNTs were modified through heat treatment to maintain their hydrophobicity. MWCNT/PSf support layer was prepared by adding PSf to the NMP mixed solvent containing 0.1 wt% MWCNTs using a phase inversion method. The surface porosity of the MWCNT/PSf support increased by 42~46% while its surface pore size being maintained. The TFC RO membrane made of MWCNT/PSf support layer showed a 20% flux increase while its salt rejection characteristics is sustained. In addition, the MWCNT/PSf support layer has better mechanical stability than the PSf support layer, there resulting in an increased resistance of flux reduction due to physical pressure.

Study on the Oxidation Treatment of Nanoparticles for the Critical Heat Flux (임계열유속 향상을 위한 나노물질의 산화처리에 대한 연구)

  • Kim, Woo-Joong;Jeon, Yong-Han;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.39-49
    • /
    • 2017
  • Pool boiling, one of the key thermal-hydraulics phenomena, has been widely studied for improving heat transfer efficiencies and safety of nuclear power plants, refrigerating systems, solar-collector heat pipes, and other facilities and equipments. In the present study, the critical heat flux (CHF) and heat-transfer coefficients were tested under the pool-boiling state using graphene M-5 and M-15 nanofluids as well as oxidized graphene M-5 nanofluid. The results showed that the highest CHF increase for both graphene M-5 and M-15 was at the 0.01% volume fraction and, moreover, that the CHF-increase ratio for small-diameter graphene M-5 was higher than that for large-diameter graphene M-15. Also at the 0.01% volume fraction, the oxidized graphene M-5 nanofluid showed a 41.82%-higher CHF-increase ratio and a 26.7%-higher heat-transfer coefficient relative to the same nanofluid without oxidation treatment at the excess temperature where the CHF of distilled water occurs.