• Title/Summary/Keyword: Flux density

Search Result 1,472, Processing Time 0.028 seconds

Effect of Molar Ratio of $Fe_2O_3$ and BaO Addition on the Characteristics of Sr-Ferrite ($Fe_2O_3$몰비 및 B\ulcorner첨가가 Sr-Ferrite 특성에 미치는 영향)

  • 문기훈;심영재;조성걸
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.453-460
    • /
    • 1997
  • Sr-ferrite having magnetoplumbite structure is similar to Ba-ferrite in magnetic characteristics, but better magnetic characteristics for using motor application. To improve remanence magnetic flux density(Br) and coercive force(iHc), it is necessary that sintered ferrites must have high density and grain size less than 1 $\mu$m. By varying n values in SrO.nFe2O3 basic composition, calcination temperature, and BaO addition, Sr-ferrite powder and sintered specimen was prepared. The n values, calcination temperature, and BaO addition affected secondary phase formation, particle size, and particle shape. BaO addition enhanced Fe2O3 secondary phase and hexagonal shape particle. Fe2O3 phase reduced sintered density which greatly decreased Br.

  • PDF

Dust Scattering in Turbulent Media: Correlation between the Scattered Light and Dust Column Density

  • Seon, Kwang-Il;Witt, Adolf N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2014
  • Radiative transfer models in a spherical, turbulent interstellar medium (ISM), in which the photon source is situated at the center, are calculated to investigate the correlation between the scattered light and the dust column density. The medium is modeled using fractional Brownian motion structures that are appropriate for turbulent ISM. The correlation plot between the scattered light and optical depth shows substantial scatter and deviation from simple proportionality. It was also found that the overall density contrast is smoothed out in scattered light. In other words, there is an enhancement of the dust-scattered flux in low-density regions, while the scattered flux is suppressed in high-density regions. The correlation becomes less significant as the scattering becomes closer to being isotropic and the medium becomes more turbulent. Therefore, the scattered light observed in near-infrared wavelengths would show much weaker correlation than the observations in optical and ultraviolet wavelengths. We also find that the correlation plot between scattered lights at two different wavelengths shows a tighter correlation than that of the scattered light versus the optical depth.

  • PDF

Automation of Longline -Magnetic Splitting Machine for Hooks- I- (주낙 어구의 자동화 -전자식 낚시 분리장치에 관한 연구- I-)

  • LEE Chun-Woo;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.2
    • /
    • pp.93-99
    • /
    • 1986
  • A longline is made of many snoods with baited hooks which are connected to mainline at constant intervals. Hauling the mainline, removing the unused baits and the hooked fish, and the arrangement of hooks are dependent on mainly manual labour as compared with mechanized other fishing gear in fishing operation. The mechanization for longline operation is needed in order to eliminate the manual handling and to shorten the labour time. The magnetic hook splitting apparatus which consists of the hook separator and the guide leading to storage magazine rail was devised for the mechanization of hauling operation. The experiments were carried out in order to measure the splitting rate of hooks in accordance with the hauling speed of mainline and magnetic flux density of splitting apparatus from February to November, 1985. The splitting rate was $94\%$ for the Alaska pollack (Theragra chalcogramma) hook and $96\%$ for the halibut (Paralichthys olivaceus) hook at the hauling speed 24 m/min and magnetic flux density 482 gauss. The unsplitting of hooks was caused by entangling snood in the mainline and low magnetic flux density. The rate is greater the faster hauling speed and the lower magnetic flux density, with an average of about $6\%$, The magnetic flux density needed to hook splitting becomes increased with the increasing hauling speed. When the practical hauling speed is from 20 to 35m/min, the magnetic flux density is needed from 400 to 850 gauss.

  • PDF

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

TiO2 Nano-doping Effect on Flux Pinning and Critical Current Density in an MgB2 Superconductor

  • Kang, J.H.;Park, J.S.;Lee, Y.P.;Prokhorov, V.G.
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.15-18
    • /
    • 2011
  • We have studied the $TiO_2$ doping effects on the flux pinning behavior of an $MgB_2$ superconductor synthesized by the in-situ solid-state reaction. From the field-cooled and zero-field-cooled temperature dependences of magnetization, the reversible-irreversible transition of $TiO_2$-doped $MgB_2$ was determined in the H-T diagram (the temperature dependence of upper critical magnetic field and irreversibility line). For comparison, the similar measurements are also obtained from SiC-doped $MgB_2$. The critical current density was estimated from the width of hysteresis loops in the framework of Bean's model at different temperatures. The obtained results manifest that nano-scale $TiO_2$ inclusions served as effective pinning centers and lead to the enhanced upper critical field and critical current density. It was concluded that the grain boundary pinning mechanism was realized in a $TiO_2$-doped $MgB_2$ superconductor.

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.

Numerical Analysis of Three-Dimensional Magnetic Resonance Current Density Imaging (MRCDI) (3차원 자기공명 전류밀도 영상법의 수치적 해석)

  • B.I. Lee;S.H. Oh;E.J. Woo;G. Khang;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.269-279
    • /
    • 2002
  • When we inject a current into an electrically conducting subject such as a human body, voltage and current density distributions are formed inside the subject. The current density within the subject and injection current in the lead wires generate a magnetic field. This magnetic flux density within the subject distorts phase of spin-echo magnetic resonance images. In Magnetic Resonance Current Density Imaging (MRCDI) technique, we obtain internal magnetic flux density images and produce current density images from $\bigtriangledown{\times}B/\mu_\theta$. This internal information is used in Magnetic Resonance Electrical Impedance Tomography (MREIT) where we try to reconstruct a cross-sectional resistivity image of a subject. This paper describes numerical techniques of computing voltage. current density, and magnetic flux density within a subject due to an injection current. We use the Finite Element Method (FEM) and Biot-Savart law to calculate these variables from three-dimensional models with different internal resistivity distributions. The numerical analysis techniques described in this paper are used in the design of MRCDI experiments and also image reconstruction a1gorithms for MREIT.

Reduction of Vibration and Noise of BLDC Motors by Realizing Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 진동.소음 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Kwon, Byung-Il;Kim, Hong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.95-97
    • /
    • 2006
  • Cogging torque is often a principal source of vibration, noise and difficulty of control in BLDC motors. Therefore, this paper will present a design method of magnetization system with sinusoidal air-gap flux density distribution of Nd-Fe-B magnets in ring type for reduction of Vibration and Noise and low manufacturing cost.

  • PDF

The barrier shape design for maximization of torque density in IPMSM (IPMSM의 토크밀도 극대화를 위한 Barrier의 형상 설계)

  • Youn, Jin-Gyu;Kang, Gyu-Hong;Hur, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.897_898
    • /
    • 2009
  • This paper deal with the shape design of the flux barrier to maximize the torque density and minimize the torque ripple in IPM type BLDC motor. The variation of magnetic torque and reluctance toque according to the flux barriers is analyzed in the 120 conducting period. From the result, we confirmed the barrier can be quite worthwhile for the better performance of IPM type BLDC motor

  • PDF

Analysis of air gap flux density distribution by the rotor eccentricity and slot effects (회전자 편심과 슬롯의 영향에 의한 공극의 자속밀도분포 해석)

  • Lee, Eun-Woong;Cho, Hyun-Gil;Kim, Jong-Gyeum
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.39-42
    • /
    • 1995
  • This paper analyzes air gap flux density of the induction motor with the rotor eccentricity and slot effects using Fourier series and FEM. We establishes the validity of results by analyzing the space harmonic order.

  • PDF