Numerical Analysis of Three-Dimensional Magnetic Resonance Current Density Imaging (MRCDI)

3차원 자기공명 전류밀도 영상법의 수치적 해석

  • B.I. Lee (College of Electronics and Information, Kyung Hee University) ;
  • S.H. Oh (Graduate School of East-West Medical Sciences, Kyung Hee University) ;
  • E.J. Woo (College of Electronics and Information, Kyung Hee University) ;
  • G. Khang (College of Electronics and Information, Kyung Hee University) ;
  • S.Y. Lee (Graduate School of East-West Medical Sciences, Kyung Hee University) ;
  • M.H. Cho (Graduate School of East-West Medical Sciences, Kyung Hee University) ;
  • O. Kwon (Department of Mathematics, Konkuk University) ;
  • J.R. Yoon (School of Mathematics, Korea Institute for Advanced Study) ;
  • J.K. Seo (Department of Mathematics, Yonsei University)
  • Published : 2002.08.01

Abstract

When we inject a current into an electrically conducting subject such as a human body, voltage and current density distributions are formed inside the subject. The current density within the subject and injection current in the lead wires generate a magnetic field. This magnetic flux density within the subject distorts phase of spin-echo magnetic resonance images. In Magnetic Resonance Current Density Imaging (MRCDI) technique, we obtain internal magnetic flux density images and produce current density images from $\bigtriangledown{\times}B/\mu_\theta$. This internal information is used in Magnetic Resonance Electrical Impedance Tomography (MREIT) where we try to reconstruct a cross-sectional resistivity image of a subject. This paper describes numerical techniques of computing voltage. current density, and magnetic flux density within a subject due to an injection current. We use the Finite Element Method (FEM) and Biot-Savart law to calculate these variables from three-dimensional models with different internal resistivity distributions. The numerical analysis techniques described in this paper are used in the design of MRCDI experiments and also image reconstruction a1gorithms for MREIT.

인체에 전류주입하면, 내부에는 전압 및 전류밀도의 분포가 형성된다 이때, 인체내부의 전류밀도와 전류를 주입하는 도선에 흐르는 전류는 자장을 형성하게 된다. 인체내부에 유기된 자속밀도는 자기공명영상의 위상을 변화시키므로. 위상영상으로부터 자속밀도를 측정할 수 있다. 자속밀도의 curl을 취하여 전류밀도를 구하면, 주입전류에 의한 내부의 전류밀도 분포를 영상화하는 것이 가능하다. 이러한 자기공명 전류밀도 영상법을 자기공명 임피던스 단층촬영에 응용하여 고해상도의 저항률 영상을 복원하는 연구가 진행되고 있다. 본 논문에서는 인체와 간은 전도성 물체에 전류를 주입할 때. 내부에 형성되는 전압, 전류밀도 및 자속밀도의 3차원적인 분포를 수치적으로 계산하는 방법을 기술한다. 이러한 수치적인 해석기술은 자기공명 전류밀도 영상법의 실험방법 설계와 자기공명 임피던스 단층촬영의 영상복원 알고리즘 개발에 필수적인 부분이다. 본 논문에서는 유한요소법과 Biot-Savart 법칙에 기반하여, 여러가지 모델에서 계산한 결과를 기술하고, 그 해석을 통하여 수치적인 해의 정확도와 유의성을 검증하였다.

Keywords

References

  1. Mag. Reson. Imag. v.7 In vivo detection of applied electric currents by magnetic resonance imaging M.L.G. Joy;G.C. Scott;R.M. Henkelman https://doi.org/10.1016/0730-725X(89)90328-7
  2. IEEE Trans. Med. Imag. v.10 no.3 Measurement of nonuniform current density by magnetic resonance G.C. Scott;M.L.G. Joy;R.L. Armstrong;R.M. Henkelman https://doi.org/10.1109/42.97586
  3. J. Mag. Res. v.97 Sensitivity of magnetic-resonance current density imaging G.C. Scott;M.L.G. Joy;R.L. Armstrong;R.M. Henkelman
  4. Elektrik v.6 no.3 Imaging electrical current density using nuclear mangetic resonance M. Eyuboglu;R. Reddy;J.S. Leigh
  5. IEEE Trans. Med. Imaging. v.14 no.3 Electromagnetic considerations for RF current density imaging G.C. Scott;M.L.G. Joy;R.L. Armstrong;R.M. Henkelman https://doi.org/10.1109/42.414617
  6. Med. Biol. Eng. Comp. v.36 Measurement of electrical current density distribution within the tissues of the head by magnetic resonance imaging H.R. Gamba;D.T. Delpy https://doi.org/10.1007/BF02510738
  7. IEEE Trans. Biomed. Eng. v.46 no.9 Imaging of current density and current pathways in rabbit brain during transcranial electrostimulation M.L.G. Joy;V.P. Lebedev;J.S. Gati https://doi.org/10.1109/10.784146
  8. SPIE v.2299 Impedance tomography using internal current density distribution measured by nuclear magnetic resonance E.J. Woo;S.Y. Lee;C.W. Mun https://doi.org/10.1117/12.179269
  9. Comm. Korean Math. Soc. v.16 no.3 Magnetic resonance electrical impedance tomography O. Kwon;J.K. Seo;E.J. Woo;J.R. Yoon
  10. Proc. ⅩⅠ Int. Conf. Elec. Bioimpedance(ICEBI) A dual modality system for high resolution-true conductivity imaging M. Eyuboglu;O. Birgul;Y.Z. Ider
  11. Proc. 23rd Ann. Int. Conf. IEEE Eng. Med. Viol. Soc. Magnetic resonance conductivity imaging using 0.15 Tesla MRI scanner Birgll;O. zbekl;B.M. Eybogulu;Y.Z. Ider
  12. IEEE Trans. Biomed. Eng. v.48 no.2 Magnetic resonance electrical impedance tomography(MREIT): simulation study of J-substitution algorithm O. Kwon;E.J. Woo;J.R. Yoon;J.K. Seo
  13. IEEE Trans. Med. Imaging v.21 no.6 J-substitution algorith, in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resisitivity images H.S. Khang;B.I. Lee;S.H. Oh;E.J. Woo;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo https://doi.org/10.1109/TMI.2002.800604
  14. submitted to IEEE Trans. Biomed. Eng. Three-dimensional forward solver for magnetic resonance electrical impedance tomography(MREIT) B.I. Lee;S.H. Oh;E.J. Woo;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo
  15. Field and Wave Electromagnetic(2nd ed.) D.K. Cheng
  16. The Finite Element Method in Electromagnetics J. Jin
  17. Finite Element Analysis D.S. Burnett
  18. Calculation of B including lead-wire effects J.R. Yoon
  19. submitted to J. Biomed. Eng. Research Magnetic resonance current density imaging for MREIT S.H. Oh;B.I. Lee;E.J. Woo;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo