• Title/Summary/Keyword: Fluoride film

Search Result 166, Processing Time 0.027 seconds

Light-managing Techniques at Front and Rear Interfaces for High Performance Amorphous Silicon Thin Film Solar Cells (고성능 비정질실리콘 박막태양전지를 위한 전후면 계면에서의 빛의 효율적 관리 기술)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.354-356
    • /
    • 2017
  • We focused on light management technology in amorphous silicon solar cells to suppress increase in absorber thickness for improving power conversion efficiency (PCE). $MgF_2$ and $TiO_2$ anti-reflection layers were coated on both sides of Asahi VU ($glass/SnO_2:F$) substrates, which contributed to increase in PCE from 9.16% to 9.81% at absorber thickness of only 150 nm. Also, we applied very thin $MgF_2$ as a rear reflector at n-type nanocrystalline silicon oxide/Ag interface to boost photocurrent. By reinforcing rear reflection, we could find the PCE increase from 10.08% up to 10.34% based on thin absorber about 200 nm.

A Study on the Ultrasonic Response Characteristic of PVDF Organic Thin Film by Physical Vapor Deposition Method (진공증착법으로 제조된 PVDF 유기박막의 초음파 응답 특성에 관한 연구)

  • Park, Soo-Hong
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.221-228
    • /
    • 2009
  • The purpose of this paper is to discuss the fabrication of $\beta$-PVDF($\beta$-Polyvinylidene fluoride, $\beta$-PVF2) organic thin films through the vapor deposition method and to investigate the ultrasonic response properties of the organic thin films produced. Vapor deposition was performed under the following conditions : the temperature of evaporator, the applied electric field and the pressure of reaction chamber were $270^{\circ}C$, 142.4 kV/cm and $2.0{\times}10^{-5}\;Torr$, respectively. The results showed that the degree of crystallinity increased from 47% to 67.8% with an increase in the substrate temperature. In the case of a sensor response characteristic by varying the distance from 1cm to 100cm, the output voltage decreased from 0.615V to 0.4V.

Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation

  • Cho, Hong-Baek;Nakayama, Tadachika;Jeong, DaeYong;Tanaka, Satoshi;Suematsu, Hisayuki;Niihara, Koichi;Choa, Yong-Ho
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.270-276
    • /
    • 2015
  • Polyvinylidene fluoride (PVDF)-based nanocomposites are fabricated by incorporation of boron nitride (BN) nanosheets with anisotropic orientation for a potential high thermal conducting ferroelectric materials. The PVDF is dissolved in dimethylformamide (DMF) and homogeneously mixed with exfoliated BN nanosheets, which is then cast into a polyimide film under application of high magnetic fields (0.45~10 T), where the direction of the filler alignment was controlled. The BN nanosheets are exfoliated by a mixed way of solvothermal method and ultrasonication prior to incorporation into the PVDF-based polymer suspension. X-ray diffraction, scanning electron microscope and thermal diffusivity are measured for the characterization of the polymer nanocomposites. Analysis shows that BN nanosheets are exfoliated into the fewer layers, whose basal planes are oriented either perpendicular or parallel to the composite surfaces without necessitating the surface modification induced by high magnetic fields. Moreover, the nanocomposites show a dramatic thermal diffusivity enhancement of 1056% by BN nanosheets with perpendicular orientation in comparison with the pristine PVDF at 10 vol % of BN, which relies on the degree of filler orientation. The mechanism for the magnetic field-induced orientation of BN and enhancement of thermal property of PVDF-based composites by the BN assembly are elucidated.

A Study on the Piezoelectric Sensor Response Characteristic of PVDF Organic Thin Film by Vapor Deposition Method (진공증착법으로 제조된 PVDF 유기박막의 압전 센서 응답 특성에 관한 연구)

  • Park, Soo-Hong
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.448-454
    • /
    • 2008
  • The purpose of this paper is to discuss the fabrication of $\beta$-PVDF($\beta$-Polyvinylidene fluoride, ${\beta}-PVF_2$) organic thin films through the vapor deposition method and to investigate the piezoelectric properties of the organic thin films produced. Vapor deposition was performed under the following conditions : the temperature of evaporator, the applied electric field and the pressure of reaction chamber were $270^{\circ}C$, 142.4 kV/cm and $2.0{\times}10^{-5}Torr$, respectively. The results showed that the amount of $\beta$-form PVDF increased from 72 % to 95.5 % with an increase in the substrate temperature. In the case of a sensor response characteristic by varying the force moment from $1.372{\times}10^{-5}N{\cdot}m$ to $39.2{\times}10^{-5}N{\cdot}m$, the output voltage increased from 1.39V to 7.04V.

Low-costBacksheet Materials with Excellent Resistance to Chemical Degradation for Photovoltaic Modules (태양전지모듈용 고내구성 저가형 백시트)

  • Pyo, Se Youn;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally friendly energy-conversion devices to generate electricity via the photovoltaic effect of semiconductors on solar energy. One of key elements in PV modules is "Backsheet," a multi-layered film to protect the devices from a variety of chemicals including water vapor. A representative Backsheet is composed of polyvinyl fluoride (PVF) and poly(ethylene terephthalate) (PET). PVF is relatively expensive, while showing excellent resistance to chemical attacks. Thus, it is necessary to develop alternatives which can lower its high production cost and guarantee lifetime applicable to practical PV modules at the same time. In this study, PET films with certain levels of crystallinity were utilized instead of PVF. Since it is well known that PET is suffering from trans-esterification and hydrolysis under a wide pH range, it is needed to understand decomposition behavior of the PET films under PV operation conditions. To evaluate their chemical decomposition behavior within a short period of times, accelerated decomposition test protocol is developed. Moreover, electrochemical long-term performances of the PV module employing the PET-based Backsheet are investigated to prove the efficacy of the proposed concept.

Fabrication of Two-Dimensional Array Hydrophones and Application to Ultrasonic Field Measurement (2차원 배열 수중청음기의 제작과 초음파 음장 측정에의 응용)

  • Ha, Kang-Lyeol;Kim, Moo-Joon;Kang, Gab-Joong;Hyun, Byung-Gook;Chae, Min-Ku;Imano, Gazuhiko
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.320-328
    • /
    • 2001
  • Two-dimensional array hydrophones with $8{\times}8$ elements were designed and fabricated using the PVDF(Polyvinylidene fluoride) piezoelectric film, and the method and system for ultrasonic field measurement in several MHz $\sim$ tens of MHz band using the hydrophones was established. The characteristics of frequency response relating to the backing materials were analyzed with the Mason equivalent circuit for design, and the accuracy of ultrasonic field measurement relating to the sizes and kerfs of piezoelectric elements was discussed. Good results of the measurement of ultrasonic field formed by a circular plane transducer of 2.25MHz in water were obtained by the system with the array hydrophones.

  • PDF

Effect of annealing temperature of solid electrolyte layer on the electrical characteristics of polymer memristor (고체 전해질 층의 어닐링 온도가 고분자 멤리스터의 전기적 특성에 미치는 영향)

  • Woo-Seok, Kim;Eun-Kyung, Noh;Jin-Hyuk, Kwon;Min-Hoi, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.705-709
    • /
    • 2022
  • The effect of the annealing temperature of the poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE)) solid electrolyte layer on the electrical properties of the P(VDF-TrFE)-based memristor was analyzed. In morphological analyses, the P(VDF-TrFE) thin film with 200℃ annealing temperature (200P(VDF-TrFE)) was shown to have surface roughness ≈5 times larger and thickness ≈20% smaller than that with 100℃ annealing temperature (100P(VDF-TrFE)). Compared to the 100P(VDF-TrFE) memristor (M100), the set voltage of the 200P(VDF-TrFE) memristor (M200) decreased by ≈50% and the magnitude of its reset voltage increased by ≈30%. Moreover, M200 was found to have better memory retention characteristics than M100. These differences were attributed to relatively strong local electric fields inside M200 compared to M100. This study suggests the importance of the annealing temperature in polymer memristors.

Portable Piezoelectric Film-based Glove Sensor System for Detecting Internal Defects of Watermelon (수박 내부결함판정을 위한 휴대형 압전형 장갑 센서시스템)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Hak-Jin;Park, Jong-Min;Kato, Koro
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2008
  • Dynamic excitation and response analysis is an acceptable method to determine some of physical properties of agricultural product for quality evaluation. There is a difference in the internal viscoelasticity between sound and defective fruits due to the difference of geometric structures, thereby showing different vibration characteristics. This study was carried out to develop a portable piezoelectric film-based glove sensor system that can separate internally damaged watermelons from sound ones using an acoustic impulse response technique. Two piezoelectric sensors based on polyvinylidene fluoride (PVDF) films to measure an impact force and vibration response were separately mounted on each glove. Various signal parameters including number of peaks, energy ratio, standard deviation of peak to peak distance, zero-crossing rate, and integral value of peaks were examined to develop a regression-estimated model. When using SMLR (Stepwise Multiple Linear Regression) analysis in SAS, three parameters, i.e., zeros value, number of peaks, and standard deviation of peaks were selected as usable factors with a coefficient of determination ($r^2$) of 0.92 and a standard error of calibration (SEC) of 0.15. In the validation tests using twenty watermelon samples (sound 9, defective 11), the developed model provided good capability showing a classification accuracy of 95%.

Experimental study on the Organic Ferroelectric Thin Film on Paper Substrate (유기 강유전 박막의 종이기판 응용가능성 검토)

  • Park, Byung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2131-2134
    • /
    • 2015
  • In this study, It has been demonstrated a new and realizable possibility of the ferroelectric random access memory devices by all solution processing method with paper substrates. Organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) thin films were formed on paper substrate with Al electrode for the bottom gate structure using spin-coating technique. Then, they were subjected to annealing process for crystallization. The fabricated PVDF-TrFE thin films were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found from polarization versus electric field (P-E) measurement that a PVDF-TrFE thin film on paper substrate showed very good ferroelectric property. This result agree well with that of a PVDF-TrFE thin film fabricated on the rigid Si substrate. It anticipated that these results will lead to the emergence of printable electron devices on paper. Furthermore, it could be fabricated by a solution processing method for ferroelectric random access memory device, which is reliable and very inexpensive, has a high density, and can be also fabricated easily.

Effect of Thickness on Electrical Properties of PVDF-TrFE (51/49) Copolymer

  • Kim, Joo-Nam;Jeon, Ho-Seung;Han, Hui-Seong;Im, Jong-Hyung;Park, Byung-Eun;Kim, Chul-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.881-884
    • /
    • 2008
  • In this study, polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) in the composition from 51/49, was deposited on platinum for a metal-ferroelectric-metal structure. From XRD patterns, the 70 nm- and 140 nm-thick PVDF-TrFE films showed the intensity peak of near $20^{\circ}$ connected to a ferroelectric phase. Moreover, the thicker film indicated the higher intensity than thinner one. The difference of the remanent polarization (2Pr) at 0 V is decreased gradually from 10.19 to $5.7{\mu}C/cm^2$ as the thickness decrease from 140 to 70 nm. However, when the thickness decreased to 50 nm, the 2Pr rapidly drop to $1.6{\mu}C/cm^2$ so the minimum critical thickness might be at least 70 nm for device. Both different thickness films, 70 and 140 nm, indicated that the characteristic of current density-voltage was measured for $10^{-6}{\sim}10^{-7}A/cm^2$ below 15 V and the thicker film maintained relatively lower current density than thinner one. From these results, we can expect that the electrical properties for the devices particularly ferroelectric thin film transistor using PVDF-TrFE copolymer were able to be on the trade-off relationship between the remanent polarization with the bias voltage and the leakage current.