• Title/Summary/Keyword: Fluorescence sensing

Search Result 87, Processing Time 0.024 seconds

Development and Characterization of Optical Dissolved Oxygen Sensor based on the Fluorescence Detection (형광검출기반 광학식 용존산소 측정센서 개발 및 특성 분석)

  • Kwak, Hyun Min;Kwon, Myeunghoi;Choi, Gyewoon;Jung, Yoonseok;Jung, Changhwan;Park, Kiuha;Sohn, Okjae;Kim, Junhyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.569-574
    • /
    • 2014
  • We developed and evaluated a fluorescence-based optical DO sensor (OS-100, Global Optical Communication Ltd., Korea) for long-term monitoring of the dissolved oxygen concentration in waste water treatment. Fluorescent sensing membrane containing $Ru(Dpp)_3{^{2+}}$ (tris(4,7diphenyl-1, 10-phenanthroline) ruthenium(II)) was prepared with GA sol-gel matrix and coated on a quartz plate by sprayed method. Properties of sensor film exhibit deviation about ${\pm}1%$ under wide range of DO concentration from 3 to 10. The developed optical DO sensor was actually mounted in waste water from dyeing industry and successfully applied for on-line DO monitoring. Online monitoring results showed the changes of DO concentrations in wastewater treatment processes with accuracy better than ${\pm}2%$ during the 6 months measurements period in vicious environmental conditions.

Development of the Bio-Optical Algorithms to Retrieve the Ocean Environmental Parameters from GOCI

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;P., Shanmugam;Min, Jee-Eun;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.82-85
    • /
    • 2006
  • The Geostationary Ocean Color Imager (GOCI) will be loaded in Communication, Ocean and Meteorological Satellite (COMS). To efficiently apply the GOCI data in the variety of fields, it is essential to develop the standard algorithm for estimating the concentration of ocean environmental components (, , and ). For developing the empirical algorithm, about 300 water samples and in situ measurements were collected from sea water around the Korean peninsula from 1998 to 2006. Two kinds of chlorophyll algorithms are developed by using statistical regression and fluorescence technique considering the bio-optical properties in Case-II waters. The single band algorithm for is derived by relationship between Rrs (555) and in situ concentration. The CDOM is estimated by absorption coefficient and ratio of Rrs(412)/Rrs(555). These standard algorithms will be programmed as a module of GOCI Data Processing System (GDPS) until 2008.

  • PDF

Specialty Fiber Coupler: Fabrications and Applications

  • Lee, Byeong-Ha;Eom, Joo-Beom;Park, Kwan-Seob;Park, Seong-Jun;Ju, Myeong-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2010
  • We review the research on specialty fiber couplers with emphasis placed on the characteristics that make them attractive for biomedical imaging, optical communications, and sensing applications. The fabrication of fiber couplers has been carried out with, in addition to conventional single mode fiber, various specialty fibers such as photonic crystal fiber, double clad fiber, and hole-assisted fiber with a Ge-doped core. For the fiber coupler fabrication, the side polishing and the fused biconical tapered methods have been developed. These specialty fiber couplers have been applied to optical coherence tomography, fluorescence spectroscopy, fiber sensors, and optical communication systems. This review aims to provide a detailed statement on the recent progress and novel applications of specialty fiber couplers.

Morphology-Controlled Fabrication of ZnS Nanostructures with Enhanced UV Emission

  • Kim, Yeon-Ho;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.587-587
    • /
    • 2013
  • ZnS is well-known direct band gap II-VI semiconductor, and it attracts intense interest due to its excellent properties of luminescence which enable ZnS to have promising materials for optical, photonic and electronic devices. Especially, the emission wavelength of ZnS falls in the UV absorption band of most organic compoundsand biomolecules, thus it is envisaged that ZnS based devices may find applications in increasingly important fluorescence sensing. We have developed a facile and effective one-step process for the fabrication of single-crystalline and pure-wurtzite ZnS nanostructures possessing sharp band-edge emission at room-temperature having diverse length-to-width ratios. Each of nanostructures was composed of chemically pure, structurally uniform, single-crystalline, and defect-free ZnS. These features not only suppress trap or surface states emission centered at 420 nm, but also enhance UV band-edge emission centered at 327 nm, which give as-synthesized our ZnS nanostructures possible sharp UV emission at room temperature. The reaction medium consisting of mixed solvents such as hydrazine, ethylenediamine, and water as well as proper reaction time and temperature have played an important role in the crystallinity and optical properties of ZnS nanostructures. As-synthesized our ZnS nanostructures possessing sharp UV emission guarantee high potential for both fundamental research and technological applications.

  • PDF

A Chromo- and Fluoroionophoric Thiaoxaaza-Macrocycle Functionalized with Nitrobenzofurazan Exhibiting Mercury(II) Selectivity

  • Lee, Ji-Eun;Lee, Shim-Sung;Choi, Kyu-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3707-3710
    • /
    • 2010
  • A chromo/fluorogenic $NO_2S_2$-macrocycle L functionalized with nitrobenzofurazan unit as a dual-signaling probe was synthesized and structurally characterized by single crystal X-ray analysis. In a cation-induced color change experiment, L exhibited excellent $Hg^{2+}$ ion selectivity by showing the color change from orange-red to yellow. However, this hypochromic shift by $Hg^{2+}$ was observed for the weaker coordinating anion system such as ${NO_3}^-$ and ${ClO_4}^-$ ions. The observed anion effect is due to the strong coordination of anions inhibits the bond formation between $Hg^{2+}$ and the macrocyclic tert-N atom, which is sensitive to induce the color change. In the fluorometric experiment, L showed chelate-enhanced fluorescence change effect only with $Hg^{2+}$ ion, together with a change from yellow to green emission. The sensing ability for $Hg^{2+}$ with the proposed chemosensor L is due to the stable complexation with 1:1 stoichiometry (metal-to-ligand).

A Carbazole-Attached NO2S2-Macrocycle Exhibiting Hg2+ and Cu2+ Selectivity

  • Lee, Seul-Gi;Kang, Eun-Ju;Lee, Shim Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1429-1434
    • /
    • 2013
  • A synthesis and cation-induced fluorescent behavior of the carbazole-attached $NO_2S_2$-macrocycle (L) is described and structurally characterized by single crystal X-ray analysis. The photoluminescence spectrum of L in 80% $CH_3CN/CH_2Cl_2$ displays a peak maximum at 431 nm (blue emission). In the metal-induced fluorometric experiment, L showed a drastic chelation-enhanced fluorescence quenching (CHEQ) effect only with $Hg^{2+}$ and $Cu^{2+}$. In ESI-mass study, a 1:1 stoichiometry for complexation of L with $Hg^{2+}$ was confirmed, suggesting the unique sensing behavior of the proposed ligand L due to the selective complexation affinity for $Hg^{2+}$. The observed results indicate that L is a promising turn-off type fluoroionophore for $Hg^{2+}$ and $Cu^{2+}$ detections. Additionally, the $Ag^+$ complex of the precursor macrocycle was prepared and its solid structure was crystallographically characterized.

Development of a Fluorescent Sensor Based on Resazurin and Hydrotalcite for the Determination of Ethanol in Alcoholic Beverages

  • Hong Dinh Duong;Juyeon Kim;Jong Il Rhee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.70-77
    • /
    • 2024
  • In this study, a fluorescent ethanol sensor is developed to determine the ethanol concentration in the liquid phase. The sensor is developed using a complex of resazurin (RA)/resorufin (RO) and a hydrotalcite (HT) catalyst in a sol-gel matrix of methyltrimethoxysilane (MTMS) to produce a fluorescent ethanol-sensing membrane (RA/RO*HT membrane). The operation mechanism of the RA/RO*HT membrane is based on (i) the oxidation of ethanol to acetaldehyde and (ii) the reduction of RA to RO, through electron flows followed by EtOH ↔ HT ↔ RA/RO ↔ EtOH interactions. These possible redox reactions can lead to an increased fluorescence intensity of the RA/RO*HT membrane as the ethanol concentration increases. The RA/RO*HT membrane shows a linear detection range of 1-20 vol.% EtOH with limit of detection (LOD) of 0.178%. Additionally, the RA/RO*HT membrane has high sensitivity and accuracy for determining the alcohol content in several Korean alcoholic beverages.

Analysis of the Relationship between CO2 Emissions, OCO-2 XCO2 and SIF in the Korean Peninsula (한반도 지역에서 CO2 배출량과 OCO-2 XCO2 및 SIF의 관계성 분석)

  • Yeji Hwang;Jaemin Kim;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.169-181
    • /
    • 2023
  • Recently, in order to reduce carbon dioxide (CO2) emissions, which is the main cause of global warming, Korea has declared carbon emission reduction targets and carbon neutral. Accurate assessment of regional emissions and atmospheric CO2 concentrations is becoming important as a result. In this study, we identified the spatiotemporal differences between satellite-based atmospheric CO2 concentration and CO2 emissions for the Korean Peninsula region using column-averaged CO2 dry-air mole fraction from the Orbiting Carbon Observatory-2 and emission inventory. And we explained these differences using solar-induced fluorescence (SIF), a photosynthetic reaction index according to vegetation growth. The Greenhouse Gas Inventory and Research Center (GIR) and Emissions Database for Global Atmospheric Research (EDGAR) emissions continued to increase in Korea from 2014 to 2018, but the satellite-based atmospheric CO2 concentration decreased in 2018, respectively. Regionally, GIR and EDGAR emissions increased in 2018 in Gyeonggi-do and Chungcheongbuk-do, but satellite-based CO2 concentrations decreased for the corresponding years. In addition, the correlation analysis between emissions and satellite-based CO2 concentration showed a low correlation of 0.22 (GIR) and 0.16 (EDGAR) in Seoul and Gangwon-do. Atmospheric CO2 concentrations showed a different correlation with SIF by region. In the CO2-SIF correlation analysis for the growing season (May to September), Seoul and Gyeonggi-do showed a negative correlation coefficient of -0.26, Chungcheongbuk-do and Gangwon-do showed a positive correlation coefficient of 0.46. Therefore, it can be suggested that consideration of the CO2 absorption process is necessary for analyzing the relationship between the atmospheric CO2 concentration and emission inventory.

Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection (색 변화를 활용한 중금속 이온 검출에 특화된 멤브레인 기반 센서의 최근 연구 개발 동향)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.87-100
    • /
    • 2021
  • With a striking increase in the level of contamination and subsequent degradations in the environment, detection and monitoring of contaminants in various sites has become a crucial mission in current society. In this review, we have summarized the current research areas in membrane-based colorimetric sensors for trace detection of various molecules. The researches covered in this summary utilize membranes composed of cellulose fibers as sensing platforms and metal nanoparticles or fluorophores as optical reagents. Displaying decent or excellent sensitivity, most of the developed sensors achieve a significant selectivity in the presence of interfering ions. The physical and chemical properties of cellulose membrane platforms can be customized by changing the synthesis method or type of optical reagent used, allowing a wide range of applications possible. Membrane-based sensors are also portable and have great mechanical properties, which enable on-site detection of contaminants. With such superior qualities, membrane-based sensors examined in the researches were used for versatile purposes including quantification of heavy metals in drinking water, trace detection of toxic antibiotics and heavy metals in environmental water samples. Some of the sensors exhibited additional features like antimicrobial ability and recyclability. Lastly, while most of the sensors aimed for a detection enabled by naked eyes through rapid colour change, many of them investigated further detection methods like fluorescence, UV-vis spectroscopy, and RGB colour intensity.

A Study on the Blue Fluorescence Characteristics of Silica Nanoparticles with Different Particle Size (실리카 나노 입자의 크기에 따른 청색 형광 특성 연구)

  • Yoon, Ji-Hui;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • Organic dye-doped silica nanoparticles are used as a promising nanomaterials for bio-labeling, bio-imaging and bio-sensing. Fluorescent silica nanoparticles(NPs) have been synthesized by the modified $St{\ddot{o}}ber$ method. In this study, dye-free fluorescent silica NPs of various sized were synthesized by Sol-Gel process as the modified $St{\ddot{o}}ber$ method. The functional material of APTES((3-aminopropyl)triethoxysilane) was added as an additive during the Sol-Gel process. The as-synthesized silica NPs were calcined at $400^{\circ}C$ for 2 hours. The surface morphology and particle size of the as-synthesized silica NPs were characterized by field-emission scanning electron microscopy. The fluorescent characteristics of the as-synthesized silica NPs was confirmed by UV lamp irradiation of 365 nm wavelength. The photoluminescence (PL) of the as-synthesized silica NPs with different size was analyzed by fluorometry. As the results, the as-synthesized silica NPs exhibits same blue fluorescent characteristics for different NPs size. Especially, as increased of the silica NPs size, the intensity of PL was decreased. The blue fluorescence of dye-free silica NPs was attributed to linkage of $NH_2$ groups of the APTES layer and oxygen-related defects in the silica matrix skeleton.