Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.87

Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection  

Bhang, Saeyun (Bio-Convergence (BC), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.31, no.2, 2021 , pp. 87-100 More about this Journal
Abstract
With a striking increase in the level of contamination and subsequent degradations in the environment, detection and monitoring of contaminants in various sites has become a crucial mission in current society. In this review, we have summarized the current research areas in membrane-based colorimetric sensors for trace detection of various molecules. The researches covered in this summary utilize membranes composed of cellulose fibers as sensing platforms and metal nanoparticles or fluorophores as optical reagents. Displaying decent or excellent sensitivity, most of the developed sensors achieve a significant selectivity in the presence of interfering ions. The physical and chemical properties of cellulose membrane platforms can be customized by changing the synthesis method or type of optical reagent used, allowing a wide range of applications possible. Membrane-based sensors are also portable and have great mechanical properties, which enable on-site detection of contaminants. With such superior qualities, membrane-based sensors examined in the researches were used for versatile purposes including quantification of heavy metals in drinking water, trace detection of toxic antibiotics and heavy metals in environmental water samples. Some of the sensors exhibited additional features like antimicrobial ability and recyclability. Lastly, while most of the sensors aimed for a detection enabled by naked eyes through rapid colour change, many of them investigated further detection methods like fluorescence, UV-vis spectroscopy, and RGB colour intensity.
Keywords
membrane; colorimetric; sensor; fluorescence; UV-vis spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. A. Azmi and S. C. Low, "Investigating film structure of membrane-based colorimetric sensor for heavy metal detection", J. Water Process Eng., 15, 37 (2017).   DOI
2 L. Feng, Y. Zhang, L. Wen, Z. Shen, and Y. Guan, "Colorimetric determination of copper(II) ions by filtration on sol-gel membrane doped with diphenylcarbazide", Talanta, 84, 913 (2011).   DOI
3 N. Hassan and A. S. Amin, "Membrane optode for uranium(VI) preconcentration and colorimetric determination in real samples", RSC Adv., 7, 46566 (2017).   DOI
4 X. Jiang, J. Xia, and X. Luo, "Simple, rapid, and highly sensitive colorimetric sensor strips from a porous cellulose membrane stained with victoria blue B for efficient detection of trace Cd(II) in water", ACS Sustain. Chem. Eng., 8, 5184 (2020).
5 Y. F. Lee and C. C. Huang, "Colorimetric assay of lead ions in biological samples using a nano-gold-based membrane", ACS Appl. Mater. Interfaces, 3, 2747 (2011).
6 W. Alahmad, N. Tungkijanansin, T. Kaneta, and P. Varanusupakul, "A colorimetric paper-based analytical device coupled with hollow fiber membrane liquid phase microextraction (HF-LPME) for highly sensitive detection of hexavalent chromium in water samples", Talanta, 190, 78 (2018).   DOI
7 M. A. Abedalwafa, Y. Li, D. Li, X. Lv, and L. Wang, "Fast-response and reusable oxytetracycline colorimetric strips based on nickel (II) ions immobilized carboxymethylcellulose/polyacrylonitrile nanofibrous membranes", Mater., 11, 962 (2018).   DOI
8 H. Sharifi, J. Tashkhourian, and B. Hemmateenejad, "A 3D origami paper-based analytical device combined with PVC membrane for colorimetric assay of heavy metal ions: Application to determination of Cu(II) in water samples", Anal. Chim. Acta, 1126, 114 (2020).   DOI
9 A. Senthamizhan, A. Celebioglu, and T. Uyar, "Flexible and highly stable electrospun nanofibrous membrane incorporating gold nanoclusters as an efficient probe for visual colorimetric detection of Hg(ii)", J. Mater. Chem. A, 2, 12717 (2014).   DOI
10 B.-T. Zhang, H. Liu, Y. Liu, and Y. Teng, "Application trends of nanofibers in analytical chemistry", Trends Analyt. Chem., 131, 115992 (2020).
11 E. Schoolaert, R. Hoogenboom, and K. De Clerck, "Colorimetric nanofibers as optical sensors", Adv. Funct. Mater., 27, 1702646 (2017).   DOI
12 Y. Lin, D. Gritsenko, S. Feng, Y. C. Teh, X. Lu, and J. Xu, "Detection of heavy metal by paper-based microfluidics", Biosens. Bioelectron., 83, 256 (2016).   DOI
13 J. Geltmeyer, G. Vancoillie, I. Steyaert, B. Breyne, G. Cousins, K. Lava, R. Hoogenboom, K. De Buysser, and K. De Clerck, "Dye modification of nanofibrous silicon oxide membranes for colorimetric HCl and NH3 sensing", Adv. Funct. Mater., 26, 5987 (2016).   DOI
14 Y. Lee, H. Kang, H. Kim, and J. Kim, "Evaluation of membrane damage sensitivity by defect types for improving reliability of membrane integrity monitoring", Membr. J., 27, 248 (2017).   DOI
15 Y. Wu, X. Cheng, C. Xie, K. Du, X. Li, and D. Tang, "A polymer membrane tethered with a cycloruthenated complex for colorimetric detection of Hg2+ ions", Spectrochim. Acta Part A, 228, 117541 (2020).
16 H. El Kaoutit, P. Estevez, F. C. Garcia, F. Serna, and J. M. Garcia, "Sub-ppm quantification of Hg(ii) in aqueous media using both the naked eye and digital information from pictures of a colorimetric sensory polymer membrane taken with the digital camera of a conventional mobile phone", Anal. Methods, 5, 54 (2013).   DOI
17 S. Mukhopadhyay, R. Mehta, M. K. Paidi, S. K. Mandal, and A. Bhattacharya, "Development of Hg2+ colorimetric sensor using polymeric membrane", Sep. Sci. Technol., 54, 386 (2019).   DOI
18 L. Wang, X. Xu, X. Niu, and J. Pan, "Colorimetric detection and membrane removal of arsenate by a multifunctional L-arginine modified FeOOH", Sep. Purif. Technol., 258, 118021 (2021).   DOI
19 M. M. Ghobashy and T. M. Mohamed, "Radiation preparation of conducting nanocomposite membrane based on (copper/polyacrylic acid/poly vinyl alcohol) for rapid colorimetric sensor of mercury and silver ions", J. Inorg. Organomet. Polym. Mater., 28, 2297 (2018).   DOI
20 C. Zhang, H. Li, Q. Yu, L. Jia, and L. Y. Wan, "Poly(aspartic acid) electrospun nanofiber hydrogel membrane-based reusable colorimetric sensor for Cu(II) and Fe(III) detection", ACS, 4, 14633 (2019).
21 Y. Zhou, J. F. Zhang, and J. Yoon, "Fluorescence and colorimetric chemosensors for fluoride-ion detection", Chem. Rev., 114, 5511 (2014).   DOI
22 B. Zhu, M. Tang, L. Yu, Y. Qu, F. Chai, L. Chen, and H. Wu, "Silicon nanoparticles: Fluorescent, colorimetric and gel membrane multiple detection of Cu2+ and Mn2+ as well as rapid visualization of latent fingerprints", Anal. Methods, 11, 3570 (2019).   DOI
23 S. Thakkar, L. F. Dumee, M. Gupta, B. R. Singh, and W. Yang, "Nano-enabled sensors for detection of arsenic in water", Water Res., 188, 116538 (2021).   DOI
24 H. Singh, A. Bamrah, S. K. Bhardwaj, A. Deep, M. Khatri, K. H. Kim, and N. Bhardwaj, "Nano-material-based fluorescent sensors for the detection of lead ions", J. Hazard. Mater., 407, 124379 (2021).
25 Z. Zhang, H. Wang, Z. Chen, X. Wang, J. Choo, and L. Chen, "Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications", Biosens. Bioelectron., 114, 52 (2018).   DOI
26 X. Nan, Y. Huyan, H. Li, S. Sun, and Y. Xu, "Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+", Coord. Chem. Rev., 426, 213580 (2021).   DOI
27 B. Liu, J. Zhuang, and G. Wei, "Recent advances in the design of colorimetric sensors for environmental monitoring", Environ. Sci. Nano, 7, 2195 (2020).
28 D. Dai, J. Yang, Y. Wang, and Y. W. Yang, "Recent progress in functional materials for selective detection and removal of mercury(II) ions", Adv. Funct. Mater., 31, 2006168 (2021).   DOI
29 M. Venkatesan, L. Veeramuthu, F. C. Liang, W. C. Chen, C. J. Cho, C. W. Chen, J. Y. Chen, Y. Yan, S. H. Chang, and C. C. Kuo, "Evolution of electrospun nanofibers fluorescent and colorimetric sensors for environmental toxicants, pH, temperature, and cancer cells - A review with insights on applications", Chem. Eng. J., 397, 125431 (2020).
30 D. Kim and M. Kang, "Fabrication and characterizations of interpenetrating polymer network hydrogel membrane containing hydrogel beads", Membr. J., 29, 231 (2019).
31 I. A. A. Terra, L. A. Mercante, R. S. Andre, and D. S. Correa, "Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing", Biosensors, 7, 61 (2017).   DOI
32 N. A. Azmi, S. H. Ahmad, and S. C. Low, "Detection of mercury ions in water using a membrane-based colorimetric sensor", RSC Adv., 8, 251 (2018).   DOI
33 H. N. Kim, W. X. Ren, J. S. Kim, and J. Yoon, "Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions", Chem. Soc. Rev., 41, 3210 (2012).   DOI
34 J. Zhang, F. Cheng, J. Li, J. J. Zhu, and Y. Lu, "Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives", Nano Today, 11, 309 (2016).   DOI
35 T. Rasheed, M. Bilal, F. Nabeel, H. M. N. Iqbal, C. Li, and Y. Zhou, "Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals", Sci. Total Environ., 615, 476 (2018).   DOI
36 H. Shuai, C. Xiang, L. Qian, F. Bin, L. Xiaohui, D. Jipeng, Z. Chang, L. Jiahui, and Z. Wenbin, "Fluorescent sensors for detection of mercury: From small molecules to nanoprobes", Dyes Pigm., 187, 109125 (2021).   DOI
37 H. Yousefi, H.-M. Su, S. M. Imani, K. Alkhaldi, C. D. M. Filipe, and T. F. Didar, "Intelligent food packaging: A review of smart sensing technologies for monitoring food quality", ACS Sensors, 4, 808 (2019).   DOI