Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.4.326

Specialty Fiber Coupler: Fabrications and Applications  

Lee, Byeong-Ha (School of Information and Communications, Gwangju Institute of Science and Technology)
Eom, Joo-Beom (School of Information and Communications, Gwangju Institute of Science and Technology)
Park, Kwan-Seob (School of Information and Communications, Gwangju Institute of Science and Technology)
Park, Seong-Jun (School of Information and Communications, Gwangju Institute of Science and Technology)
Ju, Myeong-Jin (School of Information and Communications, Gwangju Institute of Science and Technology)
Publication Information
Journal of the Optical Society of Korea / v.14, no.4, 2010 , pp. 326-332 More about this Journal
Abstract
We review the research on specialty fiber couplers with emphasis placed on the characteristics that make them attractive for biomedical imaging, optical communications, and sensing applications. The fabrication of fiber couplers has been carried out with, in addition to conventional single mode fiber, various specialty fibers such as photonic crystal fiber, double clad fiber, and hole-assisted fiber with a Ge-doped core. For the fiber coupler fabrication, the side polishing and the fused biconical tapered methods have been developed. These specialty fiber couplers have been applied to optical coherence tomography, fluorescence spectroscopy, fiber sensors, and optical communication systems. This review aims to provide a detailed statement on the recent progress and novel applications of specialty fiber couplers.
Keywords
Photonic crystal fiber; Double clad fiber; Hole-assisted fiber; Fiber coupler; Optical coherence tomography;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, “Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt. 47, 1510-1516 (2008).   DOI
2 C.-H. Kim, J.-K. Bae, K.-I. Lee, and S.-B. Lee, “Performance evaluation of a tunable dispersion compensator based on strain-chirped fiber Bragg grating in a 40 Gb/s transmission link,” J. Opt. Soc. Korea 12, 244-248 (2008).   과학기술학회마을   DOI   ScienceOn
3 S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G.-H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Optical and Quantum Electronics 37, 1191-1198 (2005).   DOI
4 S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, I. Tomov, Z. Chen, and B. H. Lee, “Ultrawideband photonic crystal fiber coupler for multiband optical imaging system,” Appl. Opt. 10, 1980-1990 (2010).   DOI
5 L. Zenteno, “High-power double-clad fiber lasers,” IEEE J. Lightwave Technol. 11, 1435-1446 (1993).   DOI   ScienceOn
6 B. H. Lee and J. Nishii, “Cladding-surrounding interface insensitive long-period grating,” Electron. Lett. 34, 1129-1130 (1998).   DOI
7 L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K. T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express 15, 17681-17689 (2007).   DOI
8 S. Y. Ryu, H. Y. Choi, M. J. Ju, J. Na, W. J. Choi, and B. H. Lee, “The development of double clad fiber and double clad fiber coupler for fiber based biomedical imaging systems,” J. Opt. Soc. Korea 13, 310-315 (2009).   과학기술학회마을   DOI   ScienceOn
9 C. A. Patil, N. Bosschaart, M. D. Keller, T. G. VanLeeuwen, and A. Mahadevan-Jansen, “Combined Raman spectroscopy and optical coherence tomography device for tissue characterization,” Opt. Lett. 33, 1135-1137 (2008).   DOI   ScienceOn
10 A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43, 113-121 (2004).   DOI
11 S. Y. Ryu, H. Y. Choi, J. Na, E. S. Choi, and B. H. Lee, “Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber,” Opt. Lett. 33, 2347-2349 (2008).   DOI   ScienceOn
12 L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K.-T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express 15, 17681-17689 (2007).   DOI
13 H. Kim, J. C. Kim, U. C. Paek, and B. H. Lee, “Tunable photonic crystal fiber coupler based on a side-polishing technique,” Opt. Lett. 29, 1194-1196 (2004).   DOI   ScienceOn
14 B. H. Lee, J. B. Eom, J. C. Kim, D. S. Moon, and U. C. Paek, “Photonic crystal fiber coupler,” Opt. Lett. 27, 812-814 (2002).   DOI
15 J. B. Eom, H. R. Lim, K. S. Park, and B. H. Lee, “Wavelength-division-multiplexing fiber coupler based on bendinginsensitive holey optical fiber,” Opt. Lett. 35, 2726-2728 (2010).   DOI   ScienceOn
16 T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961 (1997).   DOI
17 D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Groupvelocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662 (1998).   DOI
18 J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347 (1998).   DOI   ScienceOn
19 N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397 (1999).   DOI
20 E. S. Choi, J. Na, and B. H. Lee, “Fiber-based high resolution OCT system halogen light source,” Proc. SPIE 5316, 454-462 (2004).   DOI
21 J. B. Eom, J. H. Park, and B. H. Lee, “$2{\times}2$ photonic crystal fiber splitter based on silica-based planar lightwave circuits,” Opt. Lett. 34, 3737-3739 (2009).   DOI   ScienceOn
22 H. Y. Bao and T. Y. Wang, “An enhanced fiber-optic temperature sensor for coupler visibility monitoring,” J. Optoelectron. Laser 16, 1413-1416 (2005).
23 H. S. Jang, K. N. Park, and K. S. Lee, “Characterization of tunable photonic crystal fiber directional couplers,” Appl. Opt. 46, 3688-3693 (2007).   DOI
24 M. N. Mcandrich, R. J. Orazi, and H. R. Marlin, “Polarization independent narrow channel wavelength division multiplexing fiber couplers for $1.55 {\mu}m$,” IEEE J. Lightwave Technol. 9, 442-447 (1991).   DOI   ScienceOn
25 R. Gafsi, P. Lecoy, and A. Malki, “Stress optical fiber sensor using light coupling between two laterally fused multimode optical fibers,” Appl. Opt. 37, 3417-3425 (1998).   DOI
26 K. T. Kim and K. H. Park, “Fiber-optic temperature sensor based on single mode fused fiber coupler,” J. Opt. Soc. Korea 12, 152-156 (2008).   과학기술학회마을   DOI   ScienceOn
27 R. Chen, Y. Liao, and G. Zheng, “A novel acoustic emission fiber optic sensor based on a single mode optical fiber coupler,” Chin. J. Lasers 10, 195-198 (2001).
28 K. T. Kim, D. G. Kim, W. K. Hyun, K. B. Hong, K. Im, S. J. Baik, D. K. Kim, and H. Y. Choi, “Side-coupled asymmetric plastic optical fiber coupler for optical sensor systems,” J. Opt. Soc. Korea 12, 255-261 (2008).   과학기술학회마을   DOI   ScienceOn
29 J. I. Youn, “Evaluation of morphological changes in degenerative cartilage using 3-D optical coherence tomography,” J. Opt. Soc. Korea 12, 98-102 (2008).   과학기술학회마을   DOI   ScienceOn
30 J. H. Oh, H. Lee, and J. H. Kim, “Detection of magnetic nanoparticles in tissue using magneto-motive DP-OCT,” J. Opt. Soc. Korea 11, 26-33 (2007).   과학기술학회마을   DOI   ScienceOn