DOI QR코드

DOI QR Code

Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection

색 변화를 활용한 중금속 이온 검출에 특화된 멤브레인 기반 센서의 최근 연구 개발 동향

  • Bhang, Saeyun (Bio-Convergence (BC), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 방세연 (연세대학교 언더우드국제대학 융합과학공학부 바이오융합과) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2021.03.10
  • Accepted : 2021.03.24
  • Published : 2021.04.30

Abstract

With a striking increase in the level of contamination and subsequent degradations in the environment, detection and monitoring of contaminants in various sites has become a crucial mission in current society. In this review, we have summarized the current research areas in membrane-based colorimetric sensors for trace detection of various molecules. The researches covered in this summary utilize membranes composed of cellulose fibers as sensing platforms and metal nanoparticles or fluorophores as optical reagents. Displaying decent or excellent sensitivity, most of the developed sensors achieve a significant selectivity in the presence of interfering ions. The physical and chemical properties of cellulose membrane platforms can be customized by changing the synthesis method or type of optical reagent used, allowing a wide range of applications possible. Membrane-based sensors are also portable and have great mechanical properties, which enable on-site detection of contaminants. With such superior qualities, membrane-based sensors examined in the researches were used for versatile purposes including quantification of heavy metals in drinking water, trace detection of toxic antibiotics and heavy metals in environmental water samples. Some of the sensors exhibited additional features like antimicrobial ability and recyclability. Lastly, while most of the sensors aimed for a detection enabled by naked eyes through rapid colour change, many of them investigated further detection methods like fluorescence, UV-vis spectroscopy, and RGB colour intensity.

최근 오염물질 수위의 급격한 상승세와 더불어 가속화되는 자연환경 파괴로 인해 다양한 환경 속에 쌓이는 오염물질의 검출 및 모니터링은 현대 사회의 중요한 미션 중 하나로 자리 잡았다. 본 논문에는 멤브레인 기반의 광학 센서를 활용한 미량 오염물질 검출에 대한 최근 연구 동향이 요약되어 있다. 본 논문에 포함된 연구들은 섬유소로 이루어진 멤브레인을 검출을 위한 플랫폼으로 사용하였으며, 금속 나노 입자나 형광단을 색 변화 검출을 위해 이용하였다. 제조된 광학 센서들은 모두 적절하거나 특출한 수준의 감도를 보였고, 대부분의 센서에서 타겟 물질이 아닌 이온이나 물질에는 반응하지 않는 정확성 또한 확인되었다. 검출 플랫폼으로 이용된 섬유소 멤브레인의 물리적, 화학적 특성들은 멤브레인 합성 방법이나 색 변화를 위한 광학 물질 등을 바꾸는 방법을 통해 각 연구의 목적에 맞추어 최적화될 수 있었다. 또한, 멤브레인을 기반으로 하여 제조된 센서들은 운반이 편리하고 기계적 성질이 강해 현장에서 바로 오염물질을 검출할 수도 있다는 사실이 제시되었다. 이러한 장점 덕분에 멤브레인 기반 센서들은 식용수에서 검출된 중금속의 정량화와 자연 수질환경에서 발견되는 미량 중금속 및 유독성 항생제의 감지 등 다양한 목적을 위해 활용될 수 있었다. 몇몇의 연구에서 제조된 센서들은 항균성이나 재활용성 또한 나타내었다. 대부분의 센서들이 타겟 물질을 감지한 후 육안으로도 식별 가능한 색 변화를 보였으나, 본 논문에 포함된 많은 연구들은 형광 발산, UV-vis 분광학, RGB 색 강도 차이 등을 비교 분석한 더 상세한 검출 결과를 제시하였다.

Keywords

References

  1. B.-T. Zhang, H. Liu, Y. Liu, and Y. Teng, "Application trends of nanofibers in analytical chemistry", Trends Analyt. Chem., 131, 115992 (2020).
  2. E. Schoolaert, R. Hoogenboom, and K. De Clerck, "Colorimetric nanofibers as optical sensors", Adv. Funct. Mater., 27, 1702646 (2017). https://doi.org/10.1002/adfm.201702646
  3. Y. Lin, D. Gritsenko, S. Feng, Y. C. Teh, X. Lu, and J. Xu, "Detection of heavy metal by paper-based microfluidics", Biosens. Bioelectron., 83, 256 (2016). https://doi.org/10.1016/j.bios.2016.04.061
  4. J. Geltmeyer, G. Vancoillie, I. Steyaert, B. Breyne, G. Cousins, K. Lava, R. Hoogenboom, K. De Buysser, and K. De Clerck, "Dye modification of nanofibrous silicon oxide membranes for colorimetric HCl and NH3 sensing", Adv. Funct. Mater., 26, 5987 (2016). https://doi.org/10.1002/adfm.201602351
  5. Y. Lee, H. Kang, H. Kim, and J. Kim, "Evaluation of membrane damage sensitivity by defect types for improving reliability of membrane integrity monitoring", Membr. J., 27, 248 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.248
  6. M. Venkatesan, L. Veeramuthu, F. C. Liang, W. C. Chen, C. J. Cho, C. W. Chen, J. Y. Chen, Y. Yan, S. H. Chang, and C. C. Kuo, "Evolution of electrospun nanofibers fluorescent and colorimetric sensors for environmental toxicants, pH, temperature, and cancer cells - A review with insights on applications", Chem. Eng. J., 397, 125431 (2020).
  7. D. Kim and M. Kang, "Fabrication and characterizations of interpenetrating polymer network hydrogel membrane containing hydrogel beads", Membr. J., 29, 231 (2019).
  8. Y. Zhou, J. F. Zhang, and J. Yoon, "Fluorescence and colorimetric chemosensors for fluoride-ion detection", Chem. Rev., 114, 5511 (2014). https://doi.org/10.1021/cr400352m
  9. I. A. A. Terra, L. A. Mercante, R. S. Andre, and D. S. Correa, "Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing", Biosensors, 7, 61 (2017). https://doi.org/10.3390/bios7040061
  10. H. N. Kim, W. X. Ren, J. S. Kim, and J. Yoon, "Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions", Chem. Soc. Rev., 41, 3210 (2012). https://doi.org/10.1039/C1CS15245A
  11. J. Zhang, F. Cheng, J. Li, J. J. Zhu, and Y. Lu, "Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives", Nano Today, 11, 309 (2016). https://doi.org/10.1016/j.nantod.2016.05.010
  12. T. Rasheed, M. Bilal, F. Nabeel, H. M. N. Iqbal, C. Li, and Y. Zhou, "Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals", Sci. Total Environ., 615, 476 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.126
  13. H. Shuai, C. Xiang, L. Qian, F. Bin, L. Xiaohui, D. Jipeng, Z. Chang, L. Jiahui, and Z. Wenbin, "Fluorescent sensors for detection of mercury: From small molecules to nanoprobes", Dyes Pigm., 187, 109125 (2021). https://doi.org/10.1016/j.dyepig.2020.109125
  14. H. Yousefi, H.-M. Su, S. M. Imani, K. Alkhaldi, C. D. M. Filipe, and T. F. Didar, "Intelligent food packaging: A review of smart sensing technologies for monitoring food quality", ACS Sensors, 4, 808 (2019). https://doi.org/10.1021/acssensors.9b00440
  15. S. Thakkar, L. F. Dumee, M. Gupta, B. R. Singh, and W. Yang, "Nano-enabled sensors for detection of arsenic in water", Water Res., 188, 116538 (2021). https://doi.org/10.1016/j.watres.2020.116538
  16. H. Singh, A. Bamrah, S. K. Bhardwaj, A. Deep, M. Khatri, K. H. Kim, and N. Bhardwaj, "Nano-material-based fluorescent sensors for the detection of lead ions", J. Hazard. Mater., 407, 124379 (2021).
  17. Z. Zhang, H. Wang, Z. Chen, X. Wang, J. Choo, and L. Chen, "Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications", Biosens. Bioelectron., 114, 52 (2018). https://doi.org/10.1016/j.bios.2018.05.015
  18. X. Nan, Y. Huyan, H. Li, S. Sun, and Y. Xu, "Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+", Coord. Chem. Rev., 426, 213580 (2021). https://doi.org/10.1016/j.ccr.2020.213580
  19. B. Liu, J. Zhuang, and G. Wei, "Recent advances in the design of colorimetric sensors for environmental monitoring", Environ. Sci. Nano, 7, 2195 (2020).
  20. D. Dai, J. Yang, Y. Wang, and Y. W. Yang, "Recent progress in functional materials for selective detection and removal of mercury(II) ions", Adv. Funct. Mater., 31, 2006168 (2021). https://doi.org/10.1002/adfm.202006168
  21. N. A. Azmi, S. H. Ahmad, and S. C. Low, "Detection of mercury ions in water using a membrane-based colorimetric sensor", RSC Adv., 8, 251 (2018). https://doi.org/10.1039/C7RA11450H
  22. N. A. Azmi and S. C. Low, "Investigating film structure of membrane-based colorimetric sensor for heavy metal detection", J. Water Process Eng., 15, 37 (2017). https://doi.org/10.1016/j.jwpe.2016.04.004
  23. L. Feng, Y. Zhang, L. Wen, Z. Shen, and Y. Guan, "Colorimetric determination of copper(II) ions by filtration on sol-gel membrane doped with diphenylcarbazide", Talanta, 84, 913 (2011). https://doi.org/10.1016/j.talanta.2011.02.033
  24. N. Hassan and A. S. Amin, "Membrane optode for uranium(VI) preconcentration and colorimetric determination in real samples", RSC Adv., 7, 46566 (2017). https://doi.org/10.1039/C7RA08942B
  25. X. Jiang, J. Xia, and X. Luo, "Simple, rapid, and highly sensitive colorimetric sensor strips from a porous cellulose membrane stained with victoria blue B for efficient detection of trace Cd(II) in water", ACS Sustain. Chem. Eng., 8, 5184 (2020).
  26. Y. F. Lee and C. C. Huang, "Colorimetric assay of lead ions in biological samples using a nano-gold-based membrane", ACS Appl. Mater. Interfaces, 3, 2747 (2011).
  27. W. Alahmad, N. Tungkijanansin, T. Kaneta, and P. Varanusupakul, "A colorimetric paper-based analytical device coupled with hollow fiber membrane liquid phase microextraction (HF-LPME) for highly sensitive detection of hexavalent chromium in water samples", Talanta, 190, 78 (2018). https://doi.org/10.1016/j.talanta.2018.07.056
  28. M. A. Abedalwafa, Y. Li, D. Li, X. Lv, and L. Wang, "Fast-response and reusable oxytetracycline colorimetric strips based on nickel (II) ions immobilized carboxymethylcellulose/polyacrylonitrile nanofibrous membranes", Mater., 11, 962 (2018). https://doi.org/10.3390/ma11060962
  29. H. Sharifi, J. Tashkhourian, and B. Hemmateenejad, "A 3D origami paper-based analytical device combined with PVC membrane for colorimetric assay of heavy metal ions: Application to determination of Cu(II) in water samples", Anal. Chim. Acta, 1126, 114 (2020). https://doi.org/10.1016/j.aca.2020.06.006
  30. A. Senthamizhan, A. Celebioglu, and T. Uyar, "Flexible and highly stable electrospun nanofibrous membrane incorporating gold nanoclusters as an efficient probe for visual colorimetric detection of Hg(ii)", J. Mater. Chem. A, 2, 12717 (2014). https://doi.org/10.1039/C4TA02295E
  31. H. El Kaoutit, P. Estevez, F. C. Garcia, F. Serna, and J. M. Garcia, "Sub-ppm quantification of Hg(ii) in aqueous media using both the naked eye and digital information from pictures of a colorimetric sensory polymer membrane taken with the digital camera of a conventional mobile phone", Anal. Methods, 5, 54 (2013). https://doi.org/10.1039/C2AY26307F
  32. S. Mukhopadhyay, R. Mehta, M. K. Paidi, S. K. Mandal, and A. Bhattacharya, "Development of Hg2+ colorimetric sensor using polymeric membrane", Sep. Sci. Technol., 54, 386 (2019). https://doi.org/10.1080/01496395.2018.1547762
  33. L. Wang, X. Xu, X. Niu, and J. Pan, "Colorimetric detection and membrane removal of arsenate by a multifunctional L-arginine modified FeOOH", Sep. Purif. Technol., 258, 118021 (2021). https://doi.org/10.1016/j.seppur.2020.118021
  34. Y. Wu, X. Cheng, C. Xie, K. Du, X. Li, and D. Tang, "A polymer membrane tethered with a cycloruthenated complex for colorimetric detection of Hg2+ ions", Spectrochim. Acta Part A, 228, 117541 (2020).
  35. M. M. Ghobashy and T. M. Mohamed, "Radiation preparation of conducting nanocomposite membrane based on (copper/polyacrylic acid/poly vinyl alcohol) for rapid colorimetric sensor of mercury and silver ions", J. Inorg. Organomet. Polym. Mater., 28, 2297 (2018). https://doi.org/10.1007/s10904-018-0882-z
  36. C. Zhang, H. Li, Q. Yu, L. Jia, and L. Y. Wan, "Poly(aspartic acid) electrospun nanofiber hydrogel membrane-based reusable colorimetric sensor for Cu(II) and Fe(III) detection", ACS, 4, 14633 (2019).
  37. B. Zhu, M. Tang, L. Yu, Y. Qu, F. Chai, L. Chen, and H. Wu, "Silicon nanoparticles: Fluorescent, colorimetric and gel membrane multiple detection of Cu2+ and Mn2+ as well as rapid visualization of latent fingerprints", Anal. Methods, 11, 3570 (2019). https://doi.org/10.1039/c9ay01011d