• Title/Summary/Keyword: Fluid-surface Model

Search Result 687, Processing Time 0.025 seconds

Study on Surface Vortices in Pump Sump

  • Long, Ngo Ich;Shin, Byeong Rog;Doh, Deog-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.60-66
    • /
    • 2012
  • One of commonly physical phenomena encountered in pump sump systems in which its significant influence to the hydraulic performance of pump system plays an important role in the field of fluid engineering, is the appearance of free surface and submerged vortices. In this paper, a study of the vortices behavior and their formative mechanism of asymmetry is considered in this paper by using numerical approach. The Reynolds-Averaged Navier-Stokes (RANS) equations and k-omega Shear Stress Transport turbulence model used to describe the properties of turbulent flows, in company with VOF multiphase model, are implemented by Fluent code with multi-block structured grid system. In the numerical simulation, the calculated elevation of air-water interface and vortex core contours are used to classify visually surface vortices as well as submerged vortices. It is shown that the free surface vortex is identified by the concavity of liquid region from the free surface and swirling flow at that own plane. To investigate the distinctive behavior of these vortices corresponding to each given flow rate at the same water level, some numerical testing of them are considered here in such a manner that the flow pattern of surface vortex are obtained similarly to the obtained results from experiment. Furthermore, the influence due to the change of grid refinement and the variation of depth of the concavity are also considered in this paper. From that, these influential factors will be implemented to design a good pump sump with higher performance in the future.

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Effects of Thermal Contact Resistance on Film Growth Rate in a Horizontal MOCVD Reactor

  • Im Ik-Tae;Choi Nag Jung;Sugiyama Masakazu;Nakano Yoshiyaki;Shimogaki Yukihiro;Kim Byoung Ho;Kim Kwang-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1338-1346
    • /
    • 2005
  • Effects of thermal contact resistance between heater and susceptor, susceptor and graphite board in a MOCVD reactor on temperature distribution and film growth rate were analyzed. One-dimensional thermal resistance model considering thermal contact resistance and heat transfer area was made up at first to find the temperature drop at the surface of graphite board. This one-dimensional model predicted the temperature drop of 18K at the board surface. Temperature distribution of a reactor wall from the three-dimensional computational fluid dynamics analysis including the gap at the wafer position showed the temperature drop of 20K. Film growth rates of InP and GaAs were predicted using computational fluid dynamics technique with chemical reaction model. Temperature distribution from the three-dimensional heat transfer calculation was used as a thermal boundary condition to the film growth rate simulations. Temperature drop due to the thermal contact resistance affected to the GaAs film growth a little but not to the InP film growth.

Characteristics of Friction Factor for Artificially Roughened Surfaces (임의로 거칠게 한 표면의 점성 마찰특성)

  • Ha, Tae-Woong;Ju, Young-Chan;Lee, Yong-Bok;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.15-20
    • /
    • 2003
  • For measuring friction factor of artificially-roughened surfaces which are usually applied to damper seals, flat plate test apparatus is designed and fabricated. The measurements of leakage flow and pressure distribution through round-hole patterned specimen with different hole areas are described, and a method is discussed for determining the friction factor experimentally. Results show that the friction factor of the round-hole patterned surface is bigger than that of smooth surface, and increases as increasing the hole area. A empirical friction factor model for the round-hole patterned surface can be descrived by the Moody's friction factor formula.

NUMERICAL DIFFUSION DECREASE OF FREE-SURFACE FLOW ANALYSIS USING SOURCE TERM IN VOLUME FRACTION TRANSPORT EQUATION (볼륨비 이송방정식의 소스항을 이용한 자유수면 유동 해석의 해 확산 감소)

  • Park, Sunho;Rhee, Shin Hyung
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code, termed SNUFOAM, which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley model ship. In results, the band width of the volume fraction contours between 0.1 to 0.9 at the hull surface was narrowed by considering the anti-diffusion term.

Capillary-Gravity waves on the Interface of a Two Layer Fluid-Derivation of K-dV Equation with Higher Order Terms

  • Choi, Jeongwhan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.5 no.1
    • /
    • pp.151-157
    • /
    • 1992
  • The objective of this paper is to study two dimensional waves on the interface between two immiscible, invicid and incompressible fluid bounded by two rigid varing boundaries when gravity and surface tension appear. By using unfied asymptotic method, a K-dV equation with higher order terms from which many model equations for the fluid domain can be obtained, is derived.

  • PDF

SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD (Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구)

  • Farhat, Hassan;Kim, Y.H.;Lee, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD (Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구)

  • Farhat, Hassan;Kim, Y.H.;Lee, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

A preliminary study on the surface finishing of a hard disk slider using magnetorheological (MR) fluid (자기유변유체를 이용한 하드디스크 슬라이더의 표면연마를 위한 기초연구)

  • Jung, B.S.;Jang, K..I.;Min, B..K.;Lee, S.J.;Seok, J.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • Surface finishing using magnetorheological (MR) fluid is useful to finish small but not too small workpieces such as those in a few millimeter scale. However, due to the high surface hardness, this finishing process does not seem to be suit for applying to a hard disk slider. In this work, a preliminary study is performed on the finishing of the hard disk slider surface with a mixture of an MR fluid and diamond powder. During a wheel type MR finishing process, centrifugal force is found to be a major factor to cause a reduction in material remove rate (MRR), which is supported by a theoretical model. To facilitate this founding, the rotational speed of tool is confined to 500rpm while a rectilinear alternating motion with the mean speed, which is equivalent to the rotational speed, is additionally applied to the workpieces. As a consequence, MRR of about 2 times of the sole rotational case is obtained. This paper shows that MR finishing process can be used to polish a hard material in millimeter scale efficiently by controlling the speeds of the tool and the workpiece.

  • PDF

A Study on the Air to Air Missile Control Fin Optimization Using the Mathematical Modeling Based on the Fluid-Structure Interaction Simulation (수학적 모델링을 이용한 공력-구조 연계 시뮬레이션 기반 공대공 미사일 조종날개 최적화 연구)

  • Lee, Seung-Jin;Park, Jin-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • This study focuses on the air to air missile control fin planform optimization for the minimizing hinge moment with the considering phenomena of fluid and structure simultaneously. The fluid-structure interaction method is applied for the fluid and structure phenomena simulation of the control fins. A transient-loosely coupled method is used for the fluid-structure interaction simulation because it is suited for using each fluid and structure dedicated simulation software. Searching global optimization point is required many re-calculation therefore in this study, a mathematical model is applied for rapidly calculation. The face centered central composite method is used for generating design points and the 2nd polynomial response surface is sued for generating mathematical model. Global optimization is performed by using the generic algorithm. An objective function is the minimizing travel distance of the center of pressure between Mach 0.7 and 2.0 condition. Finally, the objective function of optimized planform is reduced 7.5% than the baseline planform with satisfying constrained conditions.