• Title/Summary/Keyword: Flow-rate Coefficient

Search Result 933, Processing Time 0.032 seconds

Separation Properties of Sm/Nd with Karr Column (Karr column을 이용한 Sm/Nd 분리특성)

  • Eom Hyoung-Choon;Lee Jin-Young;Kim Sung-Don;Park Kye-Sung;Kim Jun-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.10-15
    • /
    • 2005
  • In this study, the separation of samarium to neodymium with Karr column was investigated. Separation properties of Sm/Nd binary system was estimated with experimental parameters such as flow rate, initial pH of aqueous phase, saponification of PC88A in organic phase and agitation speed. The extraction rate and distribution coefficient increased with increasing initial pH of aqueous phase at 16.5 ml/min(retention time 10 minute) of flow rate of organic and aqueous phase, and equilibrium pH of aqueous phase after extraction was maintained at 1.5 by saponified PC88A. Also, the extraction rate and distribution coefficient were drastically increased with increasing saponification degree of PC88A and agitation speed, and optimal saponification degree was $40\%$. Extraction rate of Nd and Sm was $19.6\%$ and $72.5\%$ respectively at retention time 10 minute, initial pH 1, saponification degree $40\%$ and agitation speed 120 rpm.

Prediction of Wave Transmission Characteristics of Low Crested Structures Using Artificial Neural Network

  • Kim, Taeyoon;Lee, Woo-Dong;Kwon, Yongju;Kim, Jongyeong;Kang, Byeonggug;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.313-325
    • /
    • 2022
  • Recently around the world, coastal erosion is paying attention as a social issue. Various constructions using low-crested and submerged structures are being performed to deal with the problems. In addition, a prediction study was researched using machine learning techniques to determine the wave attenuation characteristics of low crested structure to develop prediction matrix for wave attenuation coefficient prediction matrix consisting of weights and biases for ease access of engineers. In this study, a deep neural network model was constructed to predict the wave height transmission rate of low crested structures using Tensor flow, an open source platform. The neural network model shows a reliable prediction performance and is expected to be applied to a wide range of practical application in the field of coastal engineering. As a result of predicting the wave height transmission coefficient of the low crested structure depends on various input variable combinations, the combination of 5 condition showed relatively high accuracy with a small number of input variables defined as 0.961. In terms of the time cost of the model, it is considered that the method using the combination 5 conditions can be a good alternative. As a result of predicting the wave transmission rate of the trained deep neural network model, MSE was 1.3×10-3, I was 0.995, SI was 0.078, and I was 0.979, which have very good prediction accuracy. It is judged that the proposed model can be used as a design tool by engineers and scientists to predict the wave transmission coefficient behind the low crested structure.

An Experimental Study on the Clogging of Sand Filter in a Model Filtration-Pond (천변여과지 모형에서 여재모래의 폐색현상 실험연구)

  • Jeong, Jae-Min;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.681-685
    • /
    • 2013
  • A pilot-scale sand-box experiment was performed in order to investigate the effect of cross-flow velocity on the clogging of the filter sand in a model filtration pond. The clogging phenomenon was observed during the operation with the cross-flow varied in stages in a range of 0~40 cm/sec, and the experimental result was analyzed using a numerical code. Results showed that the cross-flow velocity in this range had no influence on the development of clogging and that clogging occurred mostly on the filter-surface. It was found that while the production rate decreased from $5m^3/m^2-day$ to $3m^3/m^2-day$ the clogging coefficient of the top 50 cm layer increased up to about 30,000 sec, which corresponded to 87% of the clogging coefficient of the total 2.4 m layer. Of the clogging coefficient of the top 50 cm layer, surface clogging constituted 90% while the other 10% was intermediate clogging. It was also found that the surface clogging increased while the intermediate clogging remained constant as the operation continued, and that filtrate turbidity along the filtration depth remained constant in spite of the increase in clogging.

The Effect of Operating Conditions on Cross-Flow Ultrafiltration with using Polyethylene Glycol (Polyethylene Glycol을 이용한 Cross-Flow Ultrafiltration에 있어서 운전조건의 영향)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.950-955
    • /
    • 1998
  • The objective of this study was to investigate the effect of running time, operating pressure, feed concentration and circulation rate on the permeation flux and the rejection rate in cross-flow ultrafiltration of polyethylene glycol(PEG) solution of molecular weight($M_w$) 8000 and 20000. The membranes used for this study were MWCO(Molecular Weight Cut-off) of 6 K and 20 K. The experiments were performed at the operating pressures of 7, 14 and 28 psi, the circulation rates of 1000 mL/min and 2000 mL/min, and the feed concentration of 100 mg/L and 1000 mg/L. At a constant pressure, the permeation flux and the observed rejection($R_o$) appeared to be approximately constant within the range of running time, 0~480 min. The permeation flux increased with increasing the operating pressure, and it increased with decreasing the feed concentration and decreasing Mw of PEG at a given pressure. On the other hand, $R_o$ decreased slightly with increasing the operating pressure. However, $R_o$ increased with increasing the feed concentration and increasing of $M_w$ of PEG at a given pressure. The variation in circulation rates did not cause any significant influence on the permeation flux. Increasing of circulation rate caused the increase of $R_o$, and $\alpha$ was increased substantially with the decrease of $M_w$ of PEG. The dimensionless parameter. permeability ratio($\alpha$), which was used to investigate flux-pressure behavior, was increased with the increase in circulation rate and operating presure. The value of $\alpha$ was less than 1 in all cases. The estimated intrinsic rejection(R). which was obtained from mass transfer coefficient, was decreased with the increase of operating pressure. However R increased with the increase of linear velocity of feed and $M_w$ of PEG.

  • PDF

La0.7Sr0.3MnO3 CMR thin film resistor deposited on SiO2/Si and Si substrates by rf magnetron sputtering for infrared sensor (SiO2/Si 및 Si 기판에 rf magnetron sputtering법으로 증착된 적외선 센서용 La0.7Sr0.3MnO3 CMR 박막 저항체 특성연구)

  • Choi, Sun-Gyu;Reddy, A. Sivasankar;Yu, Byoung-Gon;Ryu, Ho-Jun;Park, Hyung-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.130-137
    • /
    • 2008
  • $La_{0.7}Sr_{0.3}MnO_3$ films were deposited on $SiO_2$/Si and Si substrates annealed at $350^{\circ}C$ by rf magnetron sputtering. The oxygen gas flow rates were varied as 0, 40, and 80 sccm. Without post annealing process, $La_{0.7}Sr_{0.3}MnO_3$ thin films on $SiO_2$/Si and Si substrates were polycrystalline with (100), (110), and (200) growth planes. The grain size of $La_{0.7}Sr_{0.3}MnO_3$ thin films was increased with increasing oxygen gas flow rate. The sheet resistance of $La_{0.7}Sr_{0.3}MnO_3$ thin films was decreased with oxygen flow rate due to the increased grain size which induced a reduction of grain boundary. TCR (temperature coefficient of resistance) values of $La_{0.7}Sr_{0.3}MnO_3$ thin films were obtained from -2.0% to -2.2%.

Effect of the characteristics of buoy on the holding power of trapnet (부이의 특성이 통발어구의 고정력에 미치는 영향)

  • LEE, Gun-Ho;CHO, Sam-Kwang;KIM, In-Ok;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • In this paper, numerical modeling is conducted to analyze the tension of an anchor line by varying the size and drag coefficient of a buoy when the trapnet is influenced by the wave and the current simultaneously. A mass-spring model was used to analyze the behavior of trapnet underwater under the influence of waves and current. In the simulation of numerical model, wave height of 3, 4, 5 and 6 m, a period of 4.4 s, and the flow speed of 0.7 m/s were used for the wave and current condition. The drag coefficients of buoy were 0.8, 0.4 and 0.2, respectively. The size of buoy was 100, 50 and 25% based on the cylindrical buoy ($0.0311m^3$) used for swimming crab trap. The drag coefficient of the trapnet, the main model for numerical analysis, was obtained by a circular water channel experiment using a 6-component load cell. As a result of the simulation, the tension of the anchor line decreased proportional to buoy's drag coefficient and size; the higher the wave height, the greater the decrease rate of the tension. When the buoy drag coefficient and size decreased to one fourth, the tension of the anchor line decreased to a half and the tension of the anchor line was lower than the holding power of the anchor even at 6 m of wave height. Therefore, reducing the buoy drag coefficient and size appropriately reduces the trapnet load from the wave, which also reduces the possibility of trapnet loss.

Suggestion of a Model for Filling Coefficient of Hydraulic Cylinder in Concrete Pump (콘크리트펌프 유압실린더의 충진율 모델 제안)

  • Park, Chan-Kyu;Jang, Kyong-Pil;Jeong, Jae-Hong;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.195-202
    • /
    • 2016
  • In general, piston pumps are frequently used for concrete pumping. Filling coefficient signifies the ratio volume of a hydraulic cylinder to volume of concrete inside the cylinder. Therefore, it may be considered as a parameter directly affecting the flow rate and efficiency for concrete pumping. However, accurate analyses on this aspect have not yet been performed. In this paper, the data measured from horizontal pipeline pumping tests for 350m and 548m in length was analyzed to identify the relationships of rheological properties of concrete and stroke time with the filling coefficient. In addition, an equation allowing prediction of the filling coefficient from rheological properties of concrete and stroke time has been suggested.

Experimental Identification of the Damping Characteristics of a Squeeze Film Damper with Open Ends and Central Groove (열린 끝단과 중앙 홈을 갖는 스퀴즈 필름 댐퍼의 감쇠 특성에 대한 실험적 규명)

  • Nam Kyu Kim;Tae Ho Kim;Kyungdae Kang
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.28-37
    • /
    • 2024
  • This paper presents the development of a squeeze film damper (SFD) test rig and experimental identification of the effects of clearance, damper length, journal eccentricity ratio, excitation amplitude, oil supply pressure, and oil flow rate on the damping coefficients of a test SFD with open ends and a central groove. Test data are compared with predictions from a simple model developed for short SFDs with open ends and a central groove. The test results show a significant decrease in the damping coefficient with increasing clearance and a dramatic increase with damper length, which are in good agreement with the simple model predictions. According to the simple model, the damping coefficient is inversely proportional to the cube of the clearance and directly proportional to the cube of the length. An increase in the journal eccentricity ratio results in a dramatic increase in the damping coefficient by as much as 15 times that of the concentric case, particularly at low excitation frequencies. By contrast, the measured damping coefficient remains almost constant with changes in the excitation amplitude and supply pressure, which are not major factors in the damper design. In general, the test data agree well with the simple model predictions, excluding cases that show increases in the SFD length and journal eccentricity, which indicate significant dependency on the excitation frequency.

Numerical Model on Suspended Load Diffusion due to Tidal Flow (조류(潮流)에 의한 부유사(浮遊砂)의 확산(擴散)에 대한 수치모형(數値模型))

  • Lee, Jong Kyu;Ahn, Soo Hahn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.13-23
    • /
    • 1984
  • The purpose of this paper is to develop a numerical model which can be used to compute the suspended load concentration of which the two-dimensional unsteady diffusion equation is able to be solved by the finite difference method using the implicit scheme. The pick-up rate formula from the bottom used in the open channel as a sink source term and the Coleman's empirical formula for the diffusion coefficient were taken, and especially the hindered settling velocity and the vertical velocity of flow due to the periodical tidal motion were taken into account, while the effects of the variables, such as the horizontal and vertical velocities of flow, tidal range, the settling velocity and hindered settling, on the suspened load concentrations have been discussed, comparing the results obtained from the different cases in the simulation conditions.

  • PDF

A Study on the Performance Characteristics of Fin-type Heat Exchanger for the Automobile Air-Conditioners (자동차 공조용 핀형 열교환기의 성능특성에 관한 연구)

  • 홍경한;전상신;이승재;박찬수;권일욱;김재열;김병철;하옥남
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.100-105
    • /
    • 2004
  • Fin-tube type(Fin-type) heat exchanger has been tested in order to replace the heat exchanger of parallel flow type(P.F -type) which is now widly used in automobile air conditioning system The following conclusions are drawn by the comparison of the characteristics of the heat exchangers. Evaporator and condenser capacities and COP(Coefficience of performance) were varied as with the compressor speed, outdoor air temperature and air flow rate changed, which much influenced on the characteristics of the air conditioning system Evaporator and condenser capacities were increased with increasing compressor speed and outdoor air temperature. Evaporator and condenser pressures of Fin-type were decreased by 7% and 5% respectively compared with those of P.F-type. The COP of Fin-type was decreased with increasing outdoor air temperature and compressor speed. The COP of P.F-type was decreased by 14% compared with that of Fin-type.