• Title/Summary/Keyword: Flow Net Work Work Analysis

Search Result 57, Processing Time 0.023 seconds

Flow Rate Characteristics of Two Parallel Pumping System (두 대의 펌프가 병렬로 설치되는 계통에서의 유량 특성)

  • Park, Y.C.;Chi, D.Y.;Seo, K.W.;Yoon, H.G.;Park, J.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.579-586
    • /
    • 2011
  • During a reactor normal operation, a primary coolant was designed to remove the fission reaction heat of the reactor. When one pump is failure and the other pump shall supply the cooling water to cool the reduced power, it is necessary to estimate how much flow will be supplied to cool the reactor. We carried a flow net work analysis for two parallel pumping system as based on the piping net work of the primary cooling system in HANARO. As result, it is estimated that the flow of one pump increased than the rated flow of the pump below the cavitation critical flow.

  • PDF

Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle (유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석)

  • Kim, Kyoung Hoon;Jin, Jaeyoung;Ko, Hyungjong
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.

An Economic Feasibility Analysis of Custom Work Service - Case of Bonghwang-myeon, Naju City - (농작업 대행사업 경제성 분석 - 나주시 봉황면 사례를 중심으로 -)

  • Lee, Jeong-Min;Shin, Seung-Yeoub
    • Journal of Agricultural Extension & Community Development
    • /
    • v.28 no.4
    • /
    • pp.167-174
    • /
    • 2021
  • This study analyzed the feasibility of custom work service to deal with the imbalance of farm labor supply due to population aging. The economic feasibility analysis is based on the case of Bonghwang-myeon in Naju-si, where the majority of farm work is entrusted to local agricultural cooperative. To assess the project profitability and economic feasibility based on the projected cash flow for the next ten years, Return On Investment (ROI), Net Present Value (NPV), and Internal Rate of Return (IRR) of the projects were calculated. The results showed that ROI is estimated at 13.7%, and NPV and IRR are KRW 1,504,932,000 and 15.6%, respectively, with a discount rate of 4.5%, indicating a good enough profitability. Furthermore, a sensitivity analysis with government support as part of an assumption showed that without the support, NPV turns negative, implying that the project is not profitable, and that government support for at least 30% of the cost is needed to secure the economic feasibility of a project. Hence, to promote agricultural work entrustment, it is necessary for the government to partly support the agricultural machinery and facility costs, which require a considerable amount of initial investment.

Development of Piston Ring Lubrication for the Ring Pack Arrangement (링팩내의 피스톤링 윤활에 관한 연구)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.46-58
    • /
    • 1985
  • The basic mechanism of lubrication between the piston ring and the cylinder wall is developed theoretically under the assumption of a reciprocating and dynamically loaded slider-bearing pair of parabolic form and smooth plane. A numerical computation for the prediction in cyclic variations of film thickness, net lubricant flow and frictional behaviour is attempted, and the influenec on the performance characteristics due to the ring height, ring face radius of curvature and the degree of offset, is also examined. The computational procedures develeped for a single ring system are extended and applied further to the complex problem of a ring pack system. It is well known that the ring pressure which is the total load on a ring, can be obtained from either an experimental measurement or a gas flow analysis. In this work, the latter of a gas low analysis method was used to calculate the pressures. It is remarked that the work done was focused on the role of flow continuity and lubricant starvation within the ring pack lubrication.

Mathematical Verification of a Nuclear Power Plant Protection System Function with Combined CPN and PVS

  • Koo, Seo-Ryong;Son, Han-Seong;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.157-171
    • /
    • 1999
  • In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for system modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, an information extractor from CPN models has been developed in this work. In order to convert the extracted information to the PVS specification language, a translator also has been developed. ML that is a higher-order functional language programs the information extractor and translator. This combined method has been applied to a protection system function of Wolsong NPP SDS2(Steam Generator Low Level Trip). As a result of this application, we could prove completeness and consistency of the requirement logically. Through this work, in short, an axiom or lemma based-analysis method for CPN models is newly suggested in order to complement CPN analysis methods and a guideline for the use of formal methods is proposed in order to apply them to NPP Software Verification and Validation.

  • PDF

ESTIMATION OF LOCAL LIQUID FILM THICKNESS IN TWO-PHASE ANNULAR FLOW

  • Lee, Bo-An;Yun, Byong-Jo;Kim, Kyung-Youn;Kim, Sin
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.71-78
    • /
    • 2012
  • In many semi-empirical analyses of flow boiling heat transfer, an annular flow is often assumed as a model flow and the local liquid film thickness is a key parameter in the analysis. This work considers a simple electrical conductance technique to estimate the local liquid film thickness in two-phase annular flows. In this approach, many electrodes are mounted flush with the inner wall of the pipe. Voltage differences between two neighboring electrodes for concentric annular flows with various liquid film thicknesses are obtained before the main experiments and logged in a look-up table. For an actual application in the annual flow, voltage differences of neighboring electrodes are measured and then corresponding local film thicknesses are determined by the interpolation of the look-up table. Even though the proposed technique is quite simple and straightforward, the numerical and static phantom experiments support its usefulness.

Application of artificial neural network for the critical flow prediction of discharge nozzle

  • Xu, Hong;Tang, Tao;Zhang, Baorui;Liu, Yuechan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.834-841
    • /
    • 2022
  • System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model (CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical quality were also considered in this model, which was seldom considered before. Comparing with the traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN model achieved the best results (more than 80% prediction results within the ±20% error limit). For the critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH code CFM development.

Hot Forming Design of a CAM for Vessel Engine (선박엔진용 캠의 열간 성형공정설계)

  • Yeom, J.T.;Kim, J.H.;Kim, J.H.;Hong, J.K.;Lee, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.417-420
    • /
    • 2009
  • The hot forming process of a CAM for vessel engine was designed by finite element (FE) simulation and experimental analysis. An aim of process design was to achieve the near-net shaped CAM forgings by hot forging process. Based on the compression test results of the low alloy steel, deformation processing map was generated using the superposition approach between the dynamic materials model (DMM) and flow stability and/or instability criteria. From the processing map, the initial heating temperature was determined as $1200^{\circ}C$. FE analysis was simulated to predict the formation of rolling defects and deformed shape with different forging designs. Optimum process design suggested in this work was made by comparing with the CAM for vessel engine manufactured by actual forging process.

  • PDF

FLOW CHARACTERISTICS OF A SYSTEM WHICH HAS TWO PARALLEL PUMPS (두 대의 펌프가 병렬로 설치된 장치의 유량 특성)

  • Park, J.G.;Park, J.H.;Park, Y.C.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • During a reactor normal operation, two parallel 50% capacity cooling pumps circulate primary coolant to remove the fission reaction heat of the reactor through heat exchangers cold by a cooling tower. When one pump is failure, the other pump shall continuously circulate the coolant to remove the residual heat generated by the fuels loaded in the reactor after reactor shutdown. It is necessary to estimate how much flow rate will be supplied to remove the residual heat. We carried out a flow network analysis for the parallel primary pumps based on the piping network of the primary cooling system in HANARO. As result, it is estimated that the flow rate of one pump increased about 1.33 times the rated flow of one pump and was maintained within the limit of the cavitation critical flow.

DEVELOPMENT OF AN LES METHODOLOGY FOR COMPLEX GEOMETRIES

  • Merzari, Elia;Ninokata, Hisashi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.893-906
    • /
    • 2009
  • The present work presents the development of a Large Eddy Simulation (LES) methodology viable for complex geometries and suitable for the simulation of rod-bundles. The use of LES and Direct Numerical Simulation (DNS) allows for a deeper analysis of the flow field and the use of stochastical tools in order to obtain additional insight into rod-bundle hydrodynamics. Moreover, traditional steady-state CFD simulations fail to accurately predict distributions of velocity and temperature in rod-bundles when the pitch (P) to diameter (D) ratio P/D is smaller than 1.1 for triangular lattices of cylindrical pins. This deficiency is considered to be due to the failure to predict large-scale coherent structures in the region of the gap. The main features of the code include multi-block capability and the use of the fractional step algorithm. As a Sub-Grid-Scale (SGS) model, a Dynamic Smagorinsky model has been used. The code has been tested on plane channel flow and the flow in annular ducts. The results are in excellent agreement with experiments and previous calculations.