Journal of the Korean Nuclear Society
Volume 31, Number 2, pp.157~171, April 1999

Mathematical Verification of a Nuclear Power Plant Protection
System Function with Combined CPN and PVS

Seo Ryong Koo, Han Seong Son and Poong Hyun Seong
Korea Advanced Institute of Science and Technology
373-1, Gusong-Dong, Yusong-Gu, Taejon,305-701, Korea

phseong@sorak kaist.ac.kr

{Received June 20, 1998)
Abstract

In this work, an automatic software verification method for Nuclear Power Plant (NPP)
protection system is developed. This method utilizes Colored Petri Net (CPN) for system
modeling and Prototype Verification System (PVS) for mathematical verification. In order to
help flow-through from modeling by CPN to mathematical proof by PVS, an information
extractor from CPN models has been developed in this work. In order to convert the extracted
information to the PVS specification language, a translator also has been developed. ML that is
a higher-order functional language programs the information extractor and translator. This
combined method has been applied to a protection system function of Wolsong NPP
SDS2(Steam Generator Low Level Trip). As a result of this application, we could prove
completeness and consistency of the requirement logically. Through this work, in short, an
axiom or lemma based-analysis method for CPN models is newly suggested in order to
complement CPN analysis methods and a guideline for the use of formal methods is proposed

in order to apply them to NPP Software Verification and Validation.
Key Words : mathematical verification, CPN, PVS, formal method

1. Introduction

In safety critical systems, use of computers
provides many potential advantages. These
advantages include more sophisticated safety
algorithms, improved availability, easier
maintenance, reduced installation costs, ease of
modification, and potential for reuse. However,
because of the safety critical nature of the
application such as NPP protection system, these
advantages have to be weighed against the

157

problems of ensuring that the computer system
can be assured adequately.

The use of digital systems is also on increase in
nuclear industry in recent years. Therefore, the
importance of system V&V (Verification and
Validation) is more emphasized in view of the
nuclear safety. Many activities are required for
NPP software V&V. IEEE std. 1012-1986 defines
software V&V activities. This standard classifies
the software V&V activities by tasks: Management
of V&V, concept phase V&V, requirements phase

158 dJ. Korean Nuclear Society, Volume 31, No. 2, April 1999

V&V, design phase V&V, implementation phase
V&V, test phase V&V, installation and checkout
phase V&V and operation and maintenance phase
V&V tasks are required [9]. Of these tasks, our
work concentrates on the requirements phase
V&V task since the requirements phase is the
most important of all the software development
phases. It is well-known that the most of software
faults occur at the requirements phase.

A number of different techniques have been
used to verify and validate safety-related systems.
Of them, formal methods have many superior
properties. Formal methods are approaches,
based on the use of mathematical techniques and
notations, for describing and analyzing properties
of software systems. Examples of formal methods
are VDM, Z, CCS, CSP, /0O Automata, and Petri
Nets [1]. However, there are few formal methods
that support both graphical representation and
mathematical proof simultaneously, though
visualization and mathematical proof are essential
properties of them.

In this work, an automatic software verification
method for NPP protection system is developed.
This method utilizes CPN for modeling and PVS
for mathematical verification. CPN supports
visualization and PVS does mathematical proofs.
For the safety-critical protection systems, complete
analysis of the system is needed since an error in
the requirements may result in serious faults of
software. CPN has been proved as an adequate
tool for requirement analysis {2]. CPN has many
advantages such as rapid prototyping and
visualization of requirements. However, CPN is
not proper for the mathematical verification of the
system. That is, CPN has many limitations in
analysis methods such as occurrence graphs, place
and transition invariants, reduction rules. In order
to complement these limitations, an axiom or
lemma based-analysis method is suggested in this
work. PVS is used for the mathematical

verification through the axiom or lemma based-
analysis method.

In this work, first, requirements of Steam
Generator Low Level Trip (one of the Wolsung
NPP SDS2 parameter) are modeled with
Design/CPN. This model enables also the easy
communication between users and system
developers. Next, PVS specification, which is
translated from CPN model, is verified
mathematically. The main focus in this work is on
the flow-through from CPN model to PVS
specification. An information extractor and a
translator have been developed for this purpose.
We introduce some major aspect of CPN and PVS
for this work in section 2. In section 3, the flow-
through from CPN model to PVS specification
with the extractor and translator is described. An
automatic software verification tool is applied to
Wolsung NPP SDS2 function in section 4.

2. Colored Petri Net and Prototype
Verification System

2.1. CPN and Design/CPN

Petri Net is a language that has been used in
modeling and analyzing the system. Petri Net has
expressions of concurrency and formal semantics.
In addition, Petri Net can visualize the actual
system with ease. However, Petri Net is so basic
that the ability of expression is limited and CPN
has been developed to overcome this limit. In
CPN, color refers to the types of data associated
with tokens and is comparable to data types in
programming languages. Design/CPN is a
powerful tool for the Colored Petri Net. The
version of CPN used in Design/CPN incorporates
variables (representing the binding of identifiers to
specific colored tokens), arc inscriptions
(expressions), and the code associated with
transitions. In Design/CPN, CPN is a graphical

Mathematical Verification of a Nuclear Power Plant Protection System --- S. R. Koo, et al

T
2
° 2
1_SLLSnr K
s

f_sLLSp

[ns]

shcond
j £5LLCond

159

1_SLLTrip

P
#taorcond = Snr_trip andalso

1lkond = Condin)
hen sllirip = ¥p
s silp = not_trip)

< Stlont

Fig. 2.1. CPN Model of SDS2 Steam Generator Low Level Trip Function

programming language with rich specification and
simulation possibilities. The programming
language through which CPN specifies desired
operations in arc expressions and transition codes
is ML.

In CPN, the most straightforward kind of
analysis is simulation, which in many respects is
similar to the testing and execution of a program.
However, it is obvious that, by means of
simulation, it is impossible to obtain a complete
proof of dynamic properties of CPN. Therefore,
there exist a number of formal analysis methods
that are based on mathematical proof techniques.
The analysis methods are occurrence graphs,
place and transition invariants, and reduction rules
techniques. The basic idea behind occurrence

graphs is to construct a graph containing a node

for each reachable marking and an arc for each
occurring binding element. Obviously such a graph
may become very large, even for small system.
This problem can lead to state explosion.
Therefore, we must simplify the CPN by omitting
the cycle counters. As reduction methods of
occurrence graphs, there exist symmetrical
markings, stubborn sets, covering markings and
proof rules methods. Place and transition
invariants technique is to construct equations
which are satisfied for all reachable marking.
Analysis by means of place and transition
invariants has several attractive properties. First, it
is possible to obtain an invariant for a hierarchical
CPN by composing invariants of the individual
pages. Secondly, we can find invariants without

fixing the system parameters, and hence we can

160 J. Korean Nuclear Society, Volume 31, No. 2, April 1999

obtain general properties which are independent
of the system parameters. Thirdly, we can
construct the invariants during the design of a
system and this will usually lead to an improved
design. However, the main drawback of invariants
analysis is the fact that it requires skills which are
considerably higher and more mathematical than
those required by the other analysis methods.
Finally, CPN can also be analyzed by means of
reduction, where the basic idea is as follows: First
we choose one or more types of properties which
we want to investigate. Then we define a set of
reduction rules by which we can simplify CPN -
without changing those properties which we are
investigating. A serious problem for many
reduction methods is that the absence of a
property in the reduced net does not tell much
about why the property is absent in the original
net [2].

One example Design/CPN model is shown in
Fig. 2.1. In this Figure, the CPN model represents
the Wolsung NPP SDS2 function (Steam
Generator Low Level Trip).

2.2. Prototype Verification System

PVS is a verification system: an interactive
environment for writing formal specifications and
checking formal proofs. It builds on nearly 20
years experience at SRI in building verification
systems, and on substantial experience with other
system. The distinguishing feature of PVS is a
synergistic integration of an expressive
specification language and powerful theorem-
proving capabilities. PVS has been applied
successfully to large and difficult applications in
both academic and industrial settings.

PVS provides an expressive specification
language that augments classical higher-order logic
with a sophisticated type system containing
predicate subtypes and dependent types, and with

1: sum : THEORY

2: BEGIN

3

4: n: VAR nat

5: sum(n): RECURSIVE nat =

6: (IF n=0 THEN 0 ELSE n + sum(n-1) ENDIF)
7 MEASURE (LAMBDA n: n)

9-

10: closed_form: THEOREM sum(n) = (n*(n+1)/2
11:
12: END sum

Fig. 2.2. Specification Language by PVS

parameterized theories and a mechanism for
defining abstract data types such as lists and trees.
The standard PVS types include numbers (reals,
rationals, integers, naturals, and the ordinals to &),
records, tuples, arrays, functions, sets, sequences,
lists, and trees, etc. The combination of features in
the PVS type-system is very convenient for
specification, but it makes typechecking
undecidable. The PVS typechecker copes with this
undecidability by generating proof obligations for
the PVS theorem prover. Most such proof
obligations can be discharged automatically.

PVS has a powerful interactive theorem
prover/proof checker. The basic deductive steps
in PVS are large compared with many other
systems: there are atomic commands for
induction, quantifier reasoning, automatic
conditional rewriting, simplification using
arithmetic and equality decision procedures and
type information, and propositional simplification
using binary decision diagrams. The PVS proof
checker manages the proof construction process
by prompting the user for a suitable command for
a given subgoal. The execution of the given
command can either generate further subgoals or
complete a subgoal and move the control over to
the next subgoal in a proof. User-defined proof
strategies can be used to enhance the automation

in the proof checker. Model-checking capabilities

Mathematical Verification of a Nuclear Power Plant Protection System ---

Closed_form :

{1} (FORALL (n: nat): sum(n) = (n*(n+1)) /2)

Rule? (induct “n’"}
Inducting on n,

This yields 2 subgoals:
Closed_form.1:

{1} sum(0)=(0*(0+1))/2

Rule? (postpone)
Postponing closed_form.1.

Closed_form.2 :
I
{1} (FORALL (j:nat):
sumff) - (*(+1)) 12
IMPLIES sum(j+1) = ((j+1) * (j+1) * (j+1+1)) 12

Ruie? (assert)

Simplifying, rewriting, and recording with decision procedures,
This completes the proof of closed_form.2,

QED.

Fig. 2.3. PVS Proof System

used for automatically verifying temporal
properties of finite-state systems have recently
been integrated into PVS. PVS’s automation
suffices to prove many straightforward results
automatically: for hard proofs, the automation
takes care of the details and frees the user to
concentrate on directing the key steps [5].

One example of PVS specification language is
shown in Fig. 2.2. Fig. 2.3 shows a part of PVS

proof system.

3. Verification Technique by Relating
CPN with PVS

It is generally well accepted that the complete
analysis of requirements is critical for safety and
effectiveness of the system. In this work, we have
selected CPN as a modeling tool. As mentioned in
section 2, in order to analyze requirements of the

system based on CPN models, various invariants

S. R. Koo, et al 161

analysis and reachability analysis techniques have
been proposed in many researches [2]. However,
these techniques have their own limitations that
they can consider only the behavioral aspects of
the models, not deal with all the logical aspects,
and easily lead to the state explosion problem.

Therefore, we suggest an axiom or lemma
based-analysis method in order to supplement the
typical CPN analysis methods. For the basis of the
axiom or lemma based-analysis, we have shown
that CPN models could be translated into axioms
or lemmas in a straightforward manner. The
translation process is automated through the
extractor and the translator developed in this
work.

In order to realize the automated analysis for the
axioms or lemmas translated from CPN models,
an effective theorem prover is required. PVS,
which is well known as the verification tool, has
been selected in this work. Fig. 3.1 depicts the

automatic software verification tool schematically.

3.1. CPN Modeling

For modeling systems with CPN, first of all,
complete analysis of the system is needed since an
error in the requirements may result in serious
faults of software. The graphical CPN model may
help us to analyze, visualize and simulate system
requirements. In CPN, requirements are modeled
by objects such as Port, Arc, Place and Transition.
Then, CPN model gives users the effects of the
rapid prototyping and the visualizing of
requirements. Therefore, it is very easy for
developers to exchange opinions with users by
CPN model.

As shown in Fig. 3.1, CPN model has
advantages to analyze the correctness of
requirements with type check, syntactic and
semantic validation, that is, the simulation with

CPN model may prove the completeness of

162 dJ. Korean Nuclear Society, Volume 31, No. 2, April 1999

Fig. 3.1. Verification Scheme

requirements and the consistency with
requirements. In Design/CPN, type checking is
performed by ‘Syntax Check’ command. Type
check supports not only syntactic check of data
type but check for properties such as
completeness and consistency. ‘Enter Simulator’
and ‘Interactive Run’ commands show the feature
of simulation process along the each path.
Specially, it is shown path by path that tokens of
the each page move around. As a result of type
check and simulation, correctness check of
requirements has been achieved successfully.
However, CPN is not proper for the mathematical
verification of the system. In this work, therefore,
PVS is used for the mathematical verification.
Then, PVS help CPN for analysis of the system
requirement. PVS also supports the type check
function. Data type mismatching is checked by
type check function in PVS. In the process of

Fig. 3.2. A Process of the Extractor in Design/CPN

Trans
name

Color Init Trans Guard Code
name wark id exn see

Place Place
id name

Fig. 3.3. The Example Structure of Extracted
Information

Theorem Proofs, semantic check of PVS
specification from system requirement is
performed and that is checked whether PVS
specification is correct logically or not. As a result
of this process, software is verified mathematically
and may have the enhanced reliability.

3.2. Conversion to PVS Specification
Language Using Extractor and Translator

It is not meaningless to perform an analysis for
each model independently because the analysis of
the system is performed in the “divide and
conquer” manner. In Design/CPN, it is impossible
to access to a data structure of the system directly,
but the system information can be extracted by
using a ML program. That is, Design/CPN has

Mathematical Verification of a Nuclear Power Plant Protection System --- S. R. Koo, et al 163

begin

do {

find a transition t;

if (check = OK) then
{ find input;

}
else PASS;

}
else PASS;

be THEOREM;

end.

read the data structure from the output of extractor;

if (t has a guard or arc expression) then

{ check whether clauses can be used for AXIOM or LEMMA;

if (there exists input place that is the output place
of another transition, and the transition has the
OK guard or arc expression)
then translate the guard or arc expression into LEMMA;

else translate the guard or arc expression into AXIOM;

} until (there is no more guard or arc expression);

Let the final (i.e., last linked to output place) guard or arc expression

Fig. 3.4. The Algorithm of the Translator

internal functions for asking questions to modeled
system. Using this ML functions and programs, we
can extract the required system information from
the CPN models. Therefore, an extractor has been
used in this work. The extractor is run on the
Design/CPN, as shown in Fig. 3.2. Objects for
converting in CPN are Place, Port, Transition,

Sub-Transition, Arc, Color, and variable
declaration. When the extractor has met Places in
CPN models, that extracts the information such as
place id, place name, color name and initial
marking. And the extractor can extract transition
id, transition name, guard expression and code.
segment in Transition objects. Fig. 3.3 shows the

164 d. Korean Nuclear Society, Volume 31, No. 2, April 1999

example structure of extracted information.

In PVS, it is hard to verify a system with the
above results. Therefore, we need a process that
the results from CPN model are converted to PVS
inputs (PVS specification language). This process
is performed with the translator developed in this
work. The translator is also constructed with ML
language. The translation process is straight-
forward. Guards of a transition are translated to
THEOREM, AXIOM or LEMMA of PVS, if clauses
can be used both in guard regions of CPN and for
THEOREM, AXIOM or LEMMA expressions. For
arc expressions, the same rules are applied. Fig.
3.4 describes the algorithm that the guards and
arc expressions of CPN are translated into
AXIOMs or LEMMASs of PVS.

When the translation process has finished
successfully, PVS input form such as Fig. 2.2 is
generated and we can verify with this converted

input mathematically.
3.3. Verification and Validation Using PVS

In this work, the method of verification is the
mathematical verification for the converted PVS
specification language. PVS specification language
for each page is represented with timed states.
Thus, we have considered the signal and the
power of the system as functions of time. Then, it
is proved mathematically using the PVS proof
system.

PVS proof system has interactive form with the
real examiner. Therefore, in PVS proof system,
prompt is {Rule?]. In this work, PVS proof system
analyzes a specification language to be based on
conditional sentences of transition, and, we
investigate that these conditional sentences are
realized in all-time cases. In addition, PVS proof
systemn shows the proof case at constant time(t=0).
In PVS proof system, proof commands like

skosimp{Skolemize then Flatten), prop

(Propositional Simplification), postpone(Go to
Next Remaining Goal), grind(induct and simplify)
are used.

3.4. Discussion

Requirements phase V&V tasks defined in IEEE
std. 1012 are as follows:

(1) Software Requirements Traceability Analysis. :
Trace SRS (Software Requirement Specification)
requirements to system requirements in
concept documentation. Analyze identified
relationships for correctness, consistency,

completeness, accuracy.

{2) Software Requirement Evaluation. : Evaluate

SRS requirements for correctness, consistency,
completeness, accuracy, readability, and
testability. Assess how well SRS satisfies
software system objectives. Assess the criticality
of requirements to identify key performance or
critical areas of software.

(3) Software Requirements Interface Analysis. :
Evaluate SRS with hardware, user, operator,
and software interface requirements
documentation for correctness, consistency,
completeness, accuracy, and readability.

(4a) Test Plan Generation. : Plan system testing to
determine if software satisfies system
objectives. Criteria for this determination are,
at a minimum: (a) compliance with all
functional requirements as complete software
end item in system environment (b)
performance at hardware, software, user, and
operator interfaces (c) adequacy of user
documentation {d) performance at boundaries
{for example, data, interface) and under stress
conditions. Plan tracing of system end-item
requirements to test design, cases,
procedures, and execution resulits. Plan
documentation of test tasks and results.

(4b) Acceptance Test Plan Generation. : Plan

Mathematical Verification of a Nuclear Power Plant Protection System --- S. R. Koo, et al 165

SLLSnrP.3

it (¢ < =30
then ps SnI_trip
wise p2 SOr_not g

$t o cose
then vz Sne_trip
Wsa w= SAF_not Mol

= Sow_not]
Ten snrcond
rise snrcond

Bf by andasp
o re

qQan
ancaiso

o)

E ser_not_tip
snr. i

snrcond

EI—

Foncasp
then v= Snr_wip
dse wx SO_NOL HE)

» gnCond

0f1x <=3p)
heny= Snr_trip
tse y= S_Not M

e seisy

eacene Ii

Fig. 4.1. CPN Model of f_SLLSnr Function

acceptance testing to determine if software
correctly implements system and software
requirements in an operational environment.
Criteria for this determination are, at a minimum:
(a) compliance with acceptance requirements in
operational environment (b) adequacy of user
documentation. Plan tracing of acceptance test
requirements to test design, cases, procedures,
and execution results. Plan documentation of test
tasks and results.

Our work could deal with the issue (2}, (3) and
(4a) and it is difficult to handle (1) and (4b) through
the method proposed in this work. In the CPN
modeling process, consistency, accuracy and
readability of system requirements could be

addressed through the various analysis methods

that Design/CPN has offered basically. The CPN
model could be simulated and analyzed in view of
occurrence graphs with ease in Design/CPN. This
may prove the completeness of requirements and
the consistency with requirements. In system test
plan generation activity, the information through
the simulation of Design/CPN can help to test
design, cases, procedures, and execution results.
On the other hand, with PVS, we can find the fact
that no significant problem can be found logically
and we can evaluate completeness and correctness
of requirements. In this way, our work can address
some issues of requirements V&V phases partially
or entirely.

In addition, it is the state of the art of software
V&V that the commercial automated-V&V tool

166

$.(Dow< 0} hen true
rpow else Sz
pow ro2s
- ™~
tawc
B pow =0 andalso pow< 903 rsp
#hen free
Vre Mgl
290 Lq
I'pow tpow - »
pow _ sppow.
EEI@—' . .)
LR €. rivec s cSusy
tpow
§t {pow >+90) than tree
sse Wise)
pow 1'54 38
o b /
LRavc

dJ. Korean Nuclear Society, Volume 31, No. 2, April 1999

Fig. 4.2. CPN Model of f_SLLSp Function

does not exist yet. And another modeling tool
such as CPN in this work is the Statecharts [1].
Statecharts are very similar to CPN as a point of
expressive power and used to specify state
transitions in reactive system. However,
Statecharts don’t have automated formal analysis
methods.

4. Application
4.1. CPN Modeling
In this work, the target requirement is that for
the Wolsung NPP SDS2 function (Steam

Generator Low Level Trip). In this requirement,
the functional requirements such as f_SLLCond,

f_SLLCondA, f SLLSnr, f SLLSp, f_SLLSpD,
and f_SLLTrip are included. These functional
requirements are modeled with Design/CPN.

Fig. 2.1 shows the top-level CPN model of the
function, and other sub-models are shown in Fig.
41t04.3

4.2. Conversion to PVS Specification
Language Using ML Language

This section is for the process to help flow-
through from requirements to PVS specification
language using extractor and translator.

As mentioned in section 2.1, PVS specification
language is composed of simple THEORYs.
Therefore, the main page is translated to SLLTrip

Mathematical Verification of a Nuclear Power Plant Protection System --- S. R. Koo, et al

167

B (pow <) then free
e Wlia]

Cravec 6§ (pow 248 sndalso powe 10)

Widn frue
dsa wise]

§t(vow_log »= 3299 andalso
row_lug<3349) then frue

$tpow_{og>2349) then bye
ose Bise)

#1icond_asa gndaiso cond_txa)

hen cond_ sl s

else it{(cond_haa andalse cond_lxb) oreise cond_asb wndaso cond ka)
then cond_alp b

slse it{cond_#eb andalso cond_Ixb)

han cond_alsd_b

eise cond_alsd_b_cl

te

rcondin

< SiCend II!

$tftcond_alaa b Orslse
fd_ai=b_b)andakso
v=Conding

n sticonduCondin
feif(cond M= b <)
b silcondsCondin
e

32392

Fig. 4.3. CPN Model of f SLLCond Function

function THEORY and sub-pages to SLLSnr,
SLLSp and SLLCond function THEORYs,
respectively. Each THEORY is described in the
next section.

4.3. Verification and Validation Using PVS

This section describes PVS specification
converted from SDS2 system models by the
translator. The PVS specification language is
composed of SLLTrip.pvs (Fig. 4.7}, SLLSnr.pvs
(Fig. 4.8), SLLSp.pvs (Fig. 4.9}, and
SLLCond.pvs (Fig. 4.10) files, named after CPN
model pages. The declaration part is translated
to dictionary.pvs (Fig. 4.5) and variables.pvs
(Fig. 4.6) files which are imported to the

THEORYSs using IMPORTING command.
Fig. 4.11 describes the partial of proof in
SLLSnr specfication language.

4.4. Discussion

In this application for Wolsung NPP SDS2,
system requirements were modeled by CPN.
Therefore, rapid prototyping and visualization
could be achieved and it was very easy to
simulate the system. In Design/CPN, the
correctness and consistency of requirements
could be analyzed through various analysis
methods. As a result of this application, we
could found that any logical problems do not

exist in the specification. We also found that

168

d. Korean Nuclear Society, Volume 31, No. 2, April 1999

dictionary % [parameters]
: THEORY
BEGIN
% ASSUMING
% assuming declarations
% ENDASSUMING
time : TYPE = nat
m_SGL : TYPE = int
f_FaveC : TYPE = int
f_Flog : TYPE = int
c¢_SLLSp : TYPE = int
c_SnrCond : TYPE = Snr_trip,
Snr_not_trip
¢_SLLCond : TYPE =
CondOut
c_Trip: TYPE=
Cond_ABC : TYPE =
b b,ab_c
Co:TYPE=

Condln,

trip, not_trip
a_aab,

ab,c

XT : TYPE = [time -> m_SGL}

YT : TYPE = [time -> ¢_SnrCond]

POWT : TYPE = [time -> f_FaveC]

POWLOGT : TYPE = [time ->
f_Flog]

END dictionary

variables

BEGIN
% ASSUMING

% assuming declarations
% ENDASSUMING
IMPORTING dictionary

% variable declare

t:time
sl :m_SGL

s2 :m_SGL

s3 :m_SGL

s4 : m_SGL

pow : POWT
pow_log : POWLOGT
sp:c_SLLSp

snrcond : c_SnrCond
slicond : ¢_SLLCond
prev : ¢_SLLCond
slltrip : ¢_Trip

x1
X2
x3
x4
yl

y2:
YT

y3

v4:

:XT
: XT
: XT
1 XT
YT

YT

YT

% | parameters]
: THEORY

cond_a: Co

cond_l : Co
cond_al : Cond_ABC

END variables

SLLTrip % [parameters]
: THEORY
BEGIN
% ASSUMING
% assuming declarations

% ENDASSUMING

IMPORTING dictionary
IMPORTING variables
IMPORTING SLLSnr
IMPORTING SLLCond
IMPORTING SLLSp

f_SLLTrip THEOREM (IF
snrcond=Snr_trip AND slicond=CondIn
THEN slitrip=trip ELSE slitrip=not_trip
ENDIF)

END SLLTrip

Fig. 4.5. Specification Language
of Dictionary.pvs

CPN has insufficient expressive power to specify
time-related properties. Therefore we can

suggest improving the CPN.

Furthermore, with PVS, the mathematical

Fig. 4.6. Specification Language Fig. 4.7. Specification Language

of Variables.pvs

of SLLTrip.pvs

verification for CPN models was performed in
order to achieve the improved software

reliability. In order to enhance the mathematical

verification with PVS, more proof strategies of

Mathematical Verification of a Nuclear Power Plant Protection System --- S. R. Koo, et al 169
SLLSnr % [parameters] SLLSp % [parameters] SLLCond % [parameters }
: THEORY : THEORY : THEORY
BEGIN BEGIN BEGIN
% ASSUMING % ASSUMING % ASSUMING
% assuming declarations % assuming declarations % assuming declarations
% ENDASSUMING % ENDASSUMING % ENDASSUMING
IMPORTING dictionary IMPORTING dictionary IMPORTING dictionary
IMPORTING variables IMPORTING variables IMPORTING variables
t1 : AXIOM (IF x1(t) <= sp THEN t8 : THEOREM T11 : THEOREM

y1(t)=Snr_trip ELSE y1(t)=Snr_not_trip
ENDIF)

12 : AXIOM (JF x2(t) <= sp THEN
y2(t)=Snr_trip ELSE y2(t)=Snr_not_trip
ENDIF)

3 : AXIOM (IF x3(t) <= sp THEN
y3(t)=Snr_trip ELSE y3(t)=Snr_not_trip
ENDIF)

t4 : AXIOM (IF x4(t) <= sp THEN
y4(t)=Snr_trip ELSE y4(t)=Snr_not_trip
ENDIF) _

t10 : THEOREM

(FORALL(t:time):(IF
y1(=y2(t) AND y2(t)=y3(t)
AND y3(t)=y4(t) AND
y4(t)=Snr_not_trip THEN
snrcond=Snr_not_trip ELSE
snrcond = Snr_trip ENDIF))

END SLLSnr

(FORALL(t:time):(IF pow(t) < 0 THEN
sp=923 ELSE (IF pow(t)>=0 AND
pow(t)<90 THEN sp=(28*pow(t)+923)
ELSE sp=3438 ENDIF) ENDIF))

END SLLSp

(FORALL(t:time):(IF pow(t)<8 THEN
cond_a=a ELSE (IF pow(t)>=8 AND
pow(t)<10 THEN cond_a=b ELSE
cond_a=c ENDIF) ENDIF))

T12 : THEOREM
(FORALL(t:time):(IF pow_log(t)<3299
THEN cond_l=a ELSE (IF
pow_log(t)>=3299 AND
pow_log(t)<3349 THEN cond_l=b
ELSE cond_l=c ENDIF) ENDIF))

T19 : THEOREM (IF cond_a=a AND
cond_l=a THEN cond_al=a_a ELSE (IF
(cond_a=a AND cond_]=b) OR
(cond_a=b AND cond_l=a) THEN
cond_al=a_b ELSE (IF cond_a=b AND
cond_l=b THEN cond_al=b_b ELSE
cond_al=a_b_c ENDIF) ENDIF)
ENDIF)

T20 : THEOREM (IF (cond_al=a_b
OR cond_al=b_b) AND prev=CondIn
THEN slicond=CondIn ELSE (IF
cond_al=a_b_c THEN sllcond=Condin
ELSE slicond=CondOut ENDIF)
ENDIF)

END SL1.Cond

Fig. 4.8. Specification Language
of SLLSnr.pvs

Fig. 4.9. Specification Language
of SLLSp.pvs

Fig. 4.10. Specification Language
of SLLTCond.pvs

170 dJ. Korean Nuclear Society, Volume 31, No. 2, April 1999

10:
[—
1 (FORALL (t: time):
(I y1(t) = y2(t) AND y2(t) = y3(t) AND y3{t) = y4(t) AND y4(t) =Sne_not_trip
THEN sarcond = Snr_not_trip ELSE snrcond = Sur_trip ENDIF))

Rule? (skosimp)

Skolemizing and flattening,

this simplifies to:

110:

[T

1 (Fylett)=y2(111) AND y20!1) = y3(111) AND y3(111) = yd(at1)
AND y4(t!11)= Sar_not_triip THEN snrcond = Sar_not_trip
ELSE snrcond = Snz_trip
ENDIF)

Rule? (prop)
Applying propositional simplification,
this yields 5 subgoals:
tol:
1 yl(l)=y20)
2 Y)Y =y30h)
3yl = yaa)
4 y(t!l)=Sor_rot_trip
[
1 sarcond = Sar_not_trip

Rule? (case "t!1=0")
Case splitting on
=0,
this yields 2 subgoals:
11011
4 tl=0
[2) yle)=y2()
(3] y2D=y3(t)
4] Y3 =ya')
5] yA(t!1)=Snr_not_trip
[
{1] snrcond = Sar_not_trip

Fig. 4.11. The Partial of Proof in SLLSnr Specification

PVS proof checker should be also developed.

5. Conclusions and Further Study

In this work, an axiom or lemma based-

analysis method for CPN models is newly
suggested in order to complement CPN analysis

Rule? (grind)

stty: : 303770706510 00167466

stty: : 303770706510 00167466

Trying repeated skolemization, instantiation, and if-lifting,
this simplifies to:

t10.1.1:

-1 t11=0

2 yl(0)=y4d(0)

-3 y2(0)=yd(0)

4 y3(0)=y4(0)

-5 Snr_not_trip?(y4(0))

1 Sur_not_trip?(snrcond)

Rule? (postpone)

Postponing t10.1.1.

110.1.2:

[[1] yle1)=y2(11)

21 = y2@t1)=y3()

[-31 y3(t!1) = y4(t!1)

[-4] y4(t!1) = Snr_not_trip
[I—

1 til=0

2] snrcond = Snr_not_trip

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

this simplifies to:

t10.1.2:

1]yl =y2(t1)

[21 y2(t1)=y3()

[-31 y3(tt1) = ya(t!1)

[-41 y4(t!1) = Snr_not_trip
[—

1] th=0

[2] snrcond = Snr_not_trip

Fig. 4.11. The Partial of Proof in SLLSnr Specifi-
cation (Cont’d)

methods. Since an existing analysis techniques
have their own limitations that they can consider
only the behavioral aspects of the models, not
deal with all the logical aspects, and easily lead
to the state explosion problem. In addition, a
guideline for the use of formal methods in order
to apply them to NPP software V&V is

Mathematical Verification of a Nuclear Power Plant Protection System --- S. R. Koo, et al 171

proposed in this work.

We could visualize the system requirements
easily by using CPN model and verify the system
mathematically by using PVS. The integration of
CPN and PVS, which realizes rapid prototyping
and mathematical verification, can enhance the
software reliability by logical analysis using PVS.
CPN and PVS can cover disadvantage of each
other. In order to help flow-through from
modeling by CPN to mathematical proof by
PVS, an information extractor from CPN models
has been developed. And a translator also has
been developed and used in this work. Our
software verification method is demonstrated to
be useful with a simple example application and
the completeness and consistency of system
requirements is proved successfully.

In the future, we are planning to use this
software verification method for safety critical
system in other areas. As a result of this work,
this software verification method may be a
foundation of enhancement for Design/CPN
and PVS. And, in order to improve the CPN,
timing issue must be addressed and this can be
based on an advancing state based modeling
tool. In addition, we are going to develop the
more adequate prover. Then we can realize the
integrated software V&V tool.

References

1. J.M. Wing, “A specifier’s introducion to

formal method,” IEEE Computer, 23(9):8-
24, (1990).

. Kurt Jensen, “Coloured Petri Nets (Basic

Concepts, Analysis Methods and Practical
Use Volume 1), Second Edition”, Springer-
Verlag Berlin Heidelberg, (1997).

. Tae-ho Kim, “Verification of Safety-Critical

System Requirements using PVS”, Master
Thesis, Department of Computer Science,

KAIST, (1997).

.Jeffrey D. Ullman, “Elements of ML

Programming”, Prenice-Hall, Inc, (1994).

. Judy Crow, Sam Owre, John Rushby,

Natarajan Shankar, Mandayam Srivas, “A
Tutorial Introduction to PVS”, Computer
Science Laboratory, SRl International,
Updated June (1995).

. S. Owre, N. Shankar and J. M. Rushby, “The

PVS Specification Language(Beta Release)”,

Computer Science Laboratory, SRI
International, April 12, (1993).

. N. Shankar, S. Owre and J. M. Rushby, “The

PVS Proof Checker: A Reference
Manual{Beta Release)”, Computer Science
Laboratory, SRI International, March 31,
(1993).

.Sam Owre and John Rushby, “FME ‘96

Tutorial: An Introduction to Some Advanced
Capabilities of PVS", Computer Science
Laboratory, SRI International, {1996).

. IEEE Standard-1012, “Software Verification

and Validation Plans”, IEEE, Inc, (1986).

