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a b s t r a c t

System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model
(CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low
precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed
in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical
quality were also considered in this model, which was seldom considered before. Comparing with the
traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict
the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error
limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN
model achieved the best results (more than 80% prediction results within the ±20% error limit). For the
critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH
code CFM development.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nuclear safety is the most significant concern for nuclear power
plants (NPPs). Various measures need to be taken to ensure that all
related equipment and facilities are in normal operation or safe
shutdown reducing the possibility of NPP accidents. It is required
that certain corresponding safetymeasures should be implemented
based on the emergency procedures when accidents (e.g., the most
common loss-of-coolant accidents (LOCAs) or steam generator tube
ruptures (SGTRs)) occur. Based on the NPP design criteria, the
design basic accident (DBA) scenarios are analyzed in detail to
obtain the NPP operating license [1]. Consequently, system
thermal-hydraulic (STH) codes, such as RELAP5, ATHLET, CATHARE
and MARS, etc. [2], were developed and widely used for the anal-
ysis. The accuracy of the STH codes is heavily dependent on their
thermal-hydraulic models [3].

According to the sensitivity study [4], the critical flow (also
called choked flow), which is caused by the leakage of two-phase
coolant from the high-pressure primary side of the NPP loop and
Xu).

by Elsevier Korea LLC. This is an
is limited by the sound speed of the two-phase flow condition [5],
may impact the accuracy of STH with a relatively higher sensitivity
during the transient simulation of the accident scenario. Actually, in
order to achieve high accuracy of STH codes, the critical flowmodel
was focused on in the nuclear community from the 1950s until now
[6,7], with a variety of critical flow models developed. The tradi-
tional critical flow models can be divided into three types:
simplified analytic models, fitted functions and numerical models
based on the conservation equations [8]. Since the first two models
are less accurate compared with the third one, the trend in the last
two decades was to develop the non-homogeneous non-equilib-
riummodels for the two-phase critical flow [9,10], considering both
the velocity and the temperature differences between the two
phases during the choking process, and achieving the critical mass
flow rate by solving a 6- or 7- ordinary differential equations (ODEs)
based on the two-phase mass, momentum and energy conserva-
tion equations. These models are more accurate but one disad-
vantage of these models is that it is time-consuming to achieve the
critical mass flow rate since the system of ODEs is normally stiff or
ill-conditioned around the critical point. It is not suitable to use in
the STH code directly [11]. To overcome these difficulties of the
traditional critical flow models, artificial neural networks (ANNs),
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Table 1
Parameter ranges of the Sozzi-Sutherland critical flow databases.

Parameter Minimum Maximum

Discharge pipe L/D ratio/- 0.37 3.50
Upstream pressure/MPa 3.03 7.07
Subcooling/�C 0 69.46
Equilibrium quality �0.006 0.007
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which can achieve a higher accurate and more efficient model, are
resorted to in this paper.

Actually, ANNs have been used widely in nuclear engineering
since the 1990s, which have been summarized in the review work
of Cong et al. [12] and Gomez-Fernandez et al. [13] with totally
hundreds of references. But if one focuses on the critical flow
models based on the machine learning methods, there were very
limited researches in the literature and, furthermore, the majority
of the researches were concentrated on the refrigerant fluid, e.g.,
R12, R134a, and R407C, etc. [14e16]. For example, A.A. Aly et al.,
have used ANN to predict the critical mass flux of R22 and R407C
(totally 200 datasets) [17]. It was seldom to use water as the fluid to
develop the machine-learning-based critical flow models. Obvi-
ously, it is valuable for nuclear engineering, especially for the
critical flow research of light water reactors (LWRs). Zhang et al.
[18] have used two kinds of ANNs to build the critical flow model
for the mass flow prediction of Leak Before Break (LBB) under a
variety of conditions. Consequently, their models were suitable to
the leakage prediction for the cracks, with an accuracy of 22.7%
(relative error), which was better than the existing correlations at
that time. An et al. [19] have developed an ANN-based critical flow
model by using the data obtained from the existed model (Henry-
Fauske) to predict the critical mass flux of break at saturated or
subcooled conditions. Following the work of An et al., Park et al.
[20] have used the ANN-based critical flow model in the LOCA
simulation of an optimized power reactor-1000. Although they
achieved a very high accuracy comparedwith the prediction results
of the Henry-Fauske model and the simulation results of the MAAP
code, its prediction accuracy needs to be evaluated based on the
experimental data.

Based on the background above, this work plans to develop an
ANN-based critical flowmodel based on the Sozzi-Sutherland tests
[21]. This work used the genetic neural network (GNN), which is a
sophisticated approach and has been widely concerned and used.
Therefore, the algorithm is not the focus of this work. The charac-
teristics and main contributions of this work can be summarized as
follows:

1. Use the experimental data with a wider scope of upstream
conditions to develop the GNN-based critical flow model. In
order to avoid the impact of human operations on the data and
model, all experimental data of the test database was used for
the training and verification of the network model.

2. While the literature only concentrated on the critical mass flux
prediction, this paper developed more detailed models for some
other parameters (i.e., the pressure and the quality of the fluid at
the choking point) of the critical flow. In this way, the developed
ANN-based critical flow model will be more powerful and
applicable in the STH codes.

The rest of this paper is organized as follows. Section 2 will
introduce the Sozzi-Sutherland database firstly and then the
detailed GNN procedure. Section 3 will discuss the GNN optimi-
zation process and show the predicted results of the GNN model
(comparing with other typical models). The conclusion of the work
is presented in Section 4.

2. GNN methodology

In order to overcome the drawback to conventional ANN (slow
convergence and may converge to the local optimal solution, weak
generalization ability, etc.) and to achieve higher efficiency, intel-
ligent optimization algorithms (e.g., Genetic Algorithm (GA), Par-
ticle Swarm Optimization (PSO), etc.) were often adopted to
optimize the conventional ANN structure or parameters. The most
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commonly used method is the genetic neural network (GNN),
which could be thought of as a combination of GA and conventional
ANNs. It has the advantages of both conventional ANNs and GA
[22]. GNN has been used widely in the field of engineering, and
nuclear engineering is no exception with several applications.
Consequently, there is no plan to describe the methodology of GNN
again, only highlight some key points. For details of the GNN, some
literature may be resorted to Refs. [23,24]. As a background, the
Sozzi-Sutherland database will be introduced firstly in this section,
and then the detailed GNN procedure will be illustrated step by
step.

2.1. Databases

Sozzi-Sutherland tests were classical data sources for the critical
flow model development [25,26]. Each Sozzi-Sutherland critical
flow test was conducted by discharging high-pressure water from a
vessel to the atmosphere. Several types of pressure vessels and flow
path geometries were designed. In this work, all the test data (229
tests totally) from two types of nozzles are selected for the critical
flow prediction based on GNN. In the tests, the critical mass flux
measurements have been made with saturated and sub-cooled
water. This parameter is dependent on pressure, fluid enthalpy,
flow path geometry, size and length. The parameter ranges of the
selected Sozzi-Sutherland critical flowdatabase are listed in Table 1.

This work also concentrates on the critical pressure and critical
quality at the choking point, which have been seldom studied by
the ANN method before. In the Sozzi-Sutherland tests, the distri-
bution of the critical pressure ratio, which is defined as the ratio of
the critical pressure at the choking point to the upstream stagna-
tion pressure, is shown in Fig. 1. For one-dimensional ideal isen-
tropic flow, there is a theoretical solution for the ratio, which is a
function of the specific heat ratio (CP=CV ) and has a value of
approximately 0.5 [27]. But for the real fluid, especially the two-
phase flow, this ratio depends on the fluid upstream thermody-
namic condition (e.g., the stagnation pressure, temperature, quality,
etc.) and the geometry of the discharge flow path (e.g., the shape of
the discharge flow path, the inner diameter, the length, etc.) [28].
These complex factors lead to the dispersed distribution in Fig. 1.

2.2. GNN procedure

In this work, the widely used back propagation (BP) algorithm is
chosen for training feed-forward ANN. But due to the defects of the
BP algorithm, GA is used for the optimization of BP-ANN weights
and biases. The weights and biases of BP-ANN are transformed into
the chromosome of GA. The flowchart for the overall critical mass
flux prediction procedure by GNN is shown in Fig. 2, which is
divided into three parts: (1) build BP-ANN network; (2) GA part; (3)
BP-ANN part (to optimize the weights and biases further and to
predict the critical flow parameters).

2.2.1. Build BP-ANN network
BP-ANN is adopted to build the critical flow model in this work.

The 4 parameters in Table 1 are chosen as the inputs of the network.
As a result, the GNN-based critical flow model can be represented



Fig. 1. Critical pressure ratio in the Sozzi-Sutherland test.

Fig. 3. Schematic sketch of the BP-ANN structure.
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as Eq. (1).

Gcr ¼ f ðL =D; P; T ; xÞ (1)

It should be emphasized that the pressure and quality at the
choking point are predicted by the network, which have never been
considered in the literature related to machine learning methods in
this field before. The neuron number of the hidden layer needs to be
selected based on the network performance, which will be studied
in section 3.2. As a typical BP-ANN, we assume that the hidden layer
is set to have 5 neurons here. Therefore, the BP-ANN structure is
4 � 5 � 3, as shown in Fig. 3. In order to make the network training
more effective, its input and output parameters are normalized
before the training step. After the prediction values are achieved,
they need to be denormalized correspondingly.
Fig. 2. The overall critical mass flux prediction proce
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The tan-sigmoid function (i.e., “tansig”) is used as the transfer
function for the input layer. As shown in Eq. (2), regarding any input
n, it can transfer the output between �1 and 1.

tansigðnÞ¼ 2
1þ e�2n � 1 (2)

A linear transfer function (i.e., “purelin”) is used in the hidden
layer. For the output layer, the LevenbergeMarquardt algorithm
(i.e., “trainlm”) is used.
2.2.2. GA part
The weights and biases of BP-ANN are represented by chromo-

somes in the GA. There are normally three methods for chromo-
some coding: symbol coding, binary coding and floating-point
coding. For the GA optimization, it can be divided into the following
steps:

� Step 1: create an initial random population (initialize weights
and biases). Set the evolution generation counter g ¼ 0 and the
dure by GNN based on experimental databases.



Table 2
Setting of BP-ANN parameters.

Parameter Value

maximum number of epochs for training 100
learning rate 0.1
performance goal 0.00001
training ratio 0.7
testing ratio 0.3

H. Xu, T. Tang, B. Zhang et al. Nuclear Engineering and Technology 54 (2022) 834e841
largest evolution generation G. Subsequently, M individuals are
randomly generated as the initial population Pð0Þ;

� Step 2: evaluate the fitness of each individual in the population.
The fitness of each individual in population PðgÞwas calculated
and evaluated. The fitness function and its value are used for the
evaluation of the performance of each individual. In this work,
the fitness function is defined as reciprocal of the error squaring
sum between prediction values and goal values. The low fitness
individuals will be deleted and only the chromosomes, which
have high fitness values, are reserved. Based on the fitness
function, it is assumed that the calculated fitness value of each
chromosome is Fi; ði ¼ 1;2;/MÞ, then the selection probability
pi of each chromosome is Eq. (3).

pi ¼ Fi

, XM
i¼1

Fi; ði¼1;2;/MÞ (3)
Fig. 4. Variation of fitness value with the evolution generation.
� Step 3: crossover and mutation. The operation of crossover is
used to generate new individuals for the population, to explore
the solution space. The crossover operation of chromosome ak
and chromosome al at the location j is Eq. (4) (w is a random
number related to the crossover probability).

akj ¼w $ akj þð1�wÞ $ alj; alj ¼ð1�wÞ $ akj þw$alj; (4)

The mutation is an operator of GA, which keeps the diversity of
the population. The mutation of chromosome aij is shown in Eq. (5)

aij ¼
(
aij þ

�
amax � aij

�
$r2$ð1� g=GÞ2; when r>0:5

aij þ
�
aij � amin

�
$r2$ð1� g=GÞ2; when r � 0:5

(5)

amax and amin are the upper and lower of chromosome aij,
respectively. r and r2 are random numbers. g and G are the gener-
ation counter and the largest evolution generation.

� Step 4: based on the genetic operation (selection, crossover,
mutation) of the population PðgÞ, a new generation of popula-
tion Pðgþ1Þ will be obtained.

� Step 5: termination criterion satisfied? The termination crite-
rion is that the largest evolution generation G is achieved.

Since the adopted BP-ANN structure is 4 � 5 � 3, there are total
of 43 parameters for the weights and bias of BP-ANN. They are
transformed into the chromosome of GA with the length 43. In the
whole operation process of GA, the selection of parameter settings
has a great impact on the results. So far, there is no systematical
perfect theory to guide how to set the appropriate parameters. The
main parameters include coding length, population size, fitness
function, crossover probability, mutation probability and iteration
times. These parameters can affect the optimization efficiency and
calculation accuracy of GA [29]. In this study, the following GA
parameters were set for the GA optimization. The maximum gen-
eration, population size, crossover probability and mutation prob-
ability are 500, 30, 0.2 and 0.1, respectively.

2.2.3. BP-ANN part
Since the network has been built in part 1 of the GNN procedure

in Fig. 2, this part is only the execution of ANN iteration to optimize
the ANN weights and biases further and to predict the key pa-
rameters of the critical flow. The parameters were set as shown in
Table 2. The maximum number of epochs to training was 100. The
learning rate affects the convergence speed and performance of the
network. The higher the learning rate, the faster the learning speed,
but the performance of the network will be reduced. In this study,
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the learning rate was 0.1. The performance goal was used to end
training and was set at 0.00001. The Sozzi-Sutherland critical flow
databases were divided randomly into two parts: 70% as training
data and the other as test data. The training data was used for the
training of BP-ANN to optimize the parameters and the test data for
an independent test of the prediction capability of the trained ANN.
The iterationwas terminated if the criteria (the maximum epoch or
the performance goal was achieved) were satisfied. After the iter-
ation of training was finished, the test database was used for the
critical flow parameter prediction.

3. Results and discussion

The GNN optimization will be discussed firstly and then, the
results of three typical critical flow parameters (critical mass flux,
critical pressure and critical quality) will be shown and compared
with other models, respectively.

3.1. GNN optimization process

The fitness values reflect the performance of GA during the
evolution epochs. Its main trend is shown in Fig. 4. The fitness
values went up very sharply at the first 150 generations and after
that, the values increased slowly and went to convergence at last.

3.2. Evaluation of model for parameter prediction

In order to evaluate the effectiveness of the critical flow model
based on GNN, two typical indices were introduced in this work to
analyze the results of the model. These indices are the mean ab-
solute error (MAE) and the normalized root mean square error
(NRMSE), as shown in Eq. (6) and Eq. (7), respectively. The
parameter GE represents the measured value in the test and GP
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represents the prediction value by GNN. The parameter N depends
on the concerning range of summation, e.g., the training database,
the test database and the overall database.

MAE¼ 1
N

XN
i¼1

����GP;i � GE;i

GE;i

���� (6)

NRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

�
GP;i � GE;i

�2
vuut ,

1
N

XN
i¼1

GE;i (7)

As described in section 2.2, the neuron number of the hidden
layer needs to be selected based on the network performance. It is
assumed that the neuron number may be 3 to 7. Fig. 5 shows the
MAE and RMSE results of these different ANN structures for the
prediction of critical mass flux. According to Fig. 5, the neuron
number of the hidden layer may impact the network performance,
but the differences are not so large. The best ANN structure is the
ANNwith a hidden layer, which has 5 neurons. Its MAEs and RMSEs
for training, test, and overall performance are the smallest of all.
Furthermore, both the three MAEs and the three RMSEs are nearly
the same (around 0.11 and 0.15, respectively), which means the
network is not over-fitting during the training.
Fig. 6. Comparison of GNN calculated and measured critical mass flux.

3.2.1. Critical mass flux

Fig. 6 shows the comparison of GNN calculated and measured
critical mass flux (training database and test database, separately).
The dashed blue line is the ±20% error limit. According to Fig. 6, no
matter the training data and the test data, the deviations between
the GNN calculated critical mass flux and themeasured data mostly
fall into the ±20% error limit.

In order to show the accuracy of the GNN results, the traditional
homogeneous equilibrium model (HEM) and Moody model [30],
which are widely used in the STH codes (ATHLET and RETRAN-3D,
etc. [31]), are introduced for comparison. Fig. 7 shows the com-
parison of the relative error distribution for critical mass flux. The
results of different models are drawn in different histograms. The
GNN calculated/predicted results are nearly distributed symmet-
rically and most of them are within small errors. The predicted
results of HEM model are normally smaller than the measured
Fig. 5. Impact of hidden layer neuro
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results because it mixed the two-phase fluid as one single phase
without mass transfer and heat transfer between the two phases.
The conclusion of HEM under-predicted results is consistent with
the literature. Moody model does not show the characteristic of
under-prediction or over-prediction, but its accuracy is lower than
the proposed GNN model in this study.
3.2.2. Critical pressure at choking point (choking pressure)
Fig. 8 shows the prediction results of critical pressure. The

dashed blue lines are the ±20% error limit. It is obvious that most of
the results calculated by the GPP model are within the ±20% error
limit for both the training databases and the test databases. Since
ns number on MAE and RMSE.



Fig. 7. Comparison of the relative error distribution for critical mass flux (the GNN model, HEM model and Moody model, respectively).
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the critical pressure is a significant parameter and a focus of the
critical flow model, several theoretical or empirical relations were
developed for its prediction. For example, Leung [32] has developed
a generalized correlation for the critical flow based on a one-
component homogeneous equilibrium model (HEM), which
assumed that the critical flow (including the critical pressure) was
only related to the upstream condition without considering the
Fig. 8. Comparison of GNN calculated and measured choking pressure.
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impact of flow path geometry; Shannak [33] has built a simplified
empirical correlation (against the influencing parameters, i.e. the
flow path geometry and the fluid specific heat ratio) for the critical
pressure ratio based on experimental data. Based on the Sozzi-
Sutherland critical flow databases, a comparison of the GNN
model in this workwith these two typical models (legend as “Leung
model” and “Shannak model”) has been shown in Fig. 9. While the
Fig. 9. Comparison of different critical pressure models.



Fig. 10. Comparison of GNN calculated and measured choking quality.

Table 3
Relative error distribution for critical flow parameters.

Range [-20% 20%] [-30% 30%] [-60% 60%] [-80% 80%]

Parameter

GC 78.3% 89.1% 99.0% 100%
Pe; C 91.7% 95.5% 99.5% 100%
Xe; C 83.8% 93.8% 99.6% 100%

H. Xu, T. Tang, B. Zhang et al. Nuclear Engineering and Technology 54 (2022) 834e841
Leung model over-predicts the critical pressures (not too surprising
since it is based on HEM) and the Shannak model under-predict the
critical pressures, the GNN model gets better results.

3.2.3. Critical quality at choking point
Owing to the lack of models for the critical quality in the liter-

ature, this work only gives the GNN model results, as shown in
Fig. 10 for the Sozzi-Sutherland critical flow databases. Similar to
the results of the critical mass flux and the critical pressure, most of
the results are within the ±20% error limit.

As a summary, Table 3 gives the relative error distribution for
the three critical flow parameters. For the critical mass flux and
critical quality, approximately 80% results arewithin the ±20% error
limit, 90% within the ±30% error limit. For the critical pressure,
approximately 90% results are within the ±20% error limit, 95%
within the ±30% error limit.

4. Conclusions

A GNN-based critical flow model has been developed in this
work. To build a powerful model, besides the critical mass flux, the
critical pressure and critical quality were also considered in this
model, which was seldom considered before. Comparing with the
HEMmodel and the Moodymodel, the GNNmodel in this work can
predict the critical mass flux with a higher accuracy (approximately
80% results are within the ±20% error limit); comparing with the
Leung model and the Shannak model for critical pressure predic-
tion, the GNN model achieved the best results (more than 80%
prediction results within the ±20% error limit). For the critical
840
quality, similar precision is achieved.
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