• Title/Summary/Keyword: Flow Field Modeling

Search Result 344, Processing Time 0.024 seconds

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

The Variation of Hydro-Geomorphological Environment in Baekgok Wetland due to Water-Level Fluctuation of Reservoir (댐 수위 변동에 따른 백곡습지의 수문지형 환경 변화)

  • Kim, Dong Hyun;Park, Jongkwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • This study was conducted to analyze the variation of hydro-geomorphological environment along Baekgok wetland, which experiencing periodical inundation, in that water-level fluctuation of reservoir caused by irrigation. Since the field data is unavailable, modeling techniques, involving models such as HSPF and TELEMAC-2D, have been applied to simulate hydrological cycle in watershed and hydrodynamics in channel scale. The result of simulation indicates that the water-level of reservoir determines both the water surface extension and water depth in the wetland. Furthermore, it also shows that water-level functions as a spatial limit factor for a fluvial environment and woody vegetation such as willow. The fact of which the scale of water-level fluctuation being larger than an average topographical relief along the wetland can explain the result. While the water-level kept high, the wetland is submerged and waterbody becomes lentic. In contrast, while the water-level is lowered, fluvial phenomena of which being dependent on flow rate and channel shape become active. Hence, the valid fluvial process is likely to take place only for 4 months annually just near the channel, and it advances to a conclusion expecting a deposition to be dominant among the wetland except for such area. It is anticipated that such understanding can contribute to establishing plans to preserve the geomorphological and ecological value of the Baekgok wetland.

The Development Method of IFC Extension Elements using Work Breakdown Structure in River Fields (작업분류체계를 활용한 하천분야 IFC 확장 개발방안)

  • Won, Jisun;Shin, Jaeyoung;Moon, Hyoun-Seok;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.77-84
    • /
    • 2018
  • As the application of BIM (Building Information Modeling) to the civil sector has become practical, and mandatory for road projects, the standardization, development of systems, etc. for the application and operation of BIM are required. In particular, it is important to develop BIM data standards for producing, sharing and managing the lifecycle data of civil facilities because they are commonly national public facilities. The BIM data standards have been developed by utilizing or extending IFC (Industry Foundation Classes), which is an international standard, but schema extensions of river facilities has not been developed thus far. This study proposes an approach to an IFC extension for river facilities using the WBS (Work Breakdown Structure) as a fundamental study for IFC-based schema extension in the river field. For this purpose, the research was carried out as follows. First, the IFC extension development method was selected to represent the river facilities by analyzing the existing IFC structure and previous research cases for the IFC extension. Second, extended elements of the river facilities were identified through an analysis of the WBS and classified according to the high-level structure of the IFC schema. Third, the classified elements were arranged based on the IFC hierarchy and the IFC schema extension for river facilities was established. Based on the suggested extension method of IFC schema, this study developed the schema by defining the element components and parts of river facilities, such as distribution flow elements and deriving their detailed types and properties.

Analysis of Research Trends in Tax Compliance using Topic Modeling (토픽모델링을 활용한 조세순응 연구 동향 분석)

  • Kang, Min-Jo;Baek, Pyoung-Gu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.99-115
    • /
    • 2022
  • In this study, domestic academic journal papers on tax compliance, tax consciousness, and faithful tax payment (hereinafter referred to as "tax compliance") were comprehensively analyzed from an interdisciplinary perspective as a representative research topic in the field of tax science. To achieve the research purpose, topic modeling technique was applied as part of text mining. In the flow of data collection-keyword preprocessing-topic model analysis, potential research topics were presented from tax compliance related keywords registered by the researcher in a total of 347 papers. The results of this study can be summarized as follows. First, in the keyword analysis, keywords such as tax investigation, tax avoidance, and honest tax reporting system were included in the top 5 keywords based on simple term-frequency, and in the TF-IDF value considering the relative importance of keywords, they were also included in the top 5 keywords. On the other hand, the keyword, tax evasion, was included in the top keyword based on the TF-IDF value, whereas it was not highlighted in the simple term-frequency. Second, eight potential research topics were derived through topic modeling. The topics covered are (1) tax fairness and suppression of tax offenses, (2) the ideology of the tax law and the validity of tax policies, (3) the principle of substance over form and guarantee of tax receivables (4) tax compliance costs and tax administration services, (5) the tax returns self- assessment system and tax experts, (6) tax climate and strategic tax behavior, (7) multifaceted tax behavior and differential compliance intentions, (8) tax information system and tax resource management. The research comprehensively looked at the various perspectives on the tax compliance from an interdisciplinary perspective, thereby comprehensively grasping past research trends on tax compliance and suggesting the direction of future research.

Analysis of Research Trends in Information Literacy Education Using Keyword Network Analysis and Topic Modeling (키워드 네트워크 분석과 토픽모델링을 활용한 정보활용교육 연구 동향 분석)

  • Jeong-Hoon, Lim
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.4
    • /
    • pp.23-48
    • /
    • 2022
  • The purpose of this study is to investigate the flow of domestic information literacy education research using keyword network analysis and topic modeling and to explore the direction of information literacy education in the future. For this reason, 306 academic papers related to information literacy education published in academic journals of the library and information science field in Korea were chosen. And through the preprocessing process for abstracts of the paper, total keyword appearance frequency, keyword appearance frequency by period, and keyword simultaneous occurrence frequency were analyzed. Subsequently, keyword network analysis analyzed the degree centrality, between centrality, and eigenvector centrality of keywords. Using structural topic modeling analysis, 15 topics -curriculum, information literacy effect, contents of information literacy education, school library education, information media literacy, information literacy ability evaluation index, library anxiety, public library program, health information literacy ability, digital divide, library assisted instruction improvement, research trend, information literacy model, and teacher role-were derived. In addition, the trend of topics by year was analyzed to confirm the change in relative weight by topic. Based on these results, the direction of information literacy education and the suggestions for follow-up research were presented.

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.

Collision Avoidance Using Omni Vision SLAM Based on Fisheye Image (어안 이미지 기반의 전방향 영상 SLAM을 이용한 충돌 회피)

  • Choi, Yun Won;Choi, Jeong Won;Im, Sung Gyu;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • This paper presents a novel collision avoidance technique for mobile robots based on omni-directional vision simultaneous localization and mapping (SLAM). This method estimates the avoidance path and speed of a robot from the location of an obstacle, which can be detected using the Lucas-Kanade Optical Flow in images obtained through fish-eye cameras mounted on the robots. The conventional methods suggest avoidance paths by constructing an arbitrary force field around the obstacle found in the complete map obtained through the SLAM. Robots can also avoid obstacles by using the speed command based on the robot modeling and curved movement path of the robot. The recent research has been improved by optimizing the algorithm for the actual robot. However, research related to a robot using omni-directional vision SLAM to acquire around information at once has been comparatively less studied. The robot with the proposed algorithm avoids obstacles according to the estimated avoidance path based on the map obtained through an omni-directional vision SLAM using a fisheye image, and returns to the original path. In particular, it avoids the obstacles with various speed and direction using acceleration components based on motion information obtained by analyzing around the obstacles. The experimental results confirm the reliability of an avoidance algorithm through comparison between position obtained by the proposed algorithm and the real position collected while avoiding the obstacles.

Numerical Simulation of Dispersion Fields of SO2 according to Atmospheric Flow Field to Reflect local characteristics in Complex Coastal Regions (복잡한 해안지역의 지역특성을 고려한 대기 유동장에 따른 SO2)

  • Lee Hwa Woon;Won Hye Young;Choi Hyun-Jung;Lee Kang-Yeol;Kim Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.297-309
    • /
    • 2005
  • Recently air quality modeling studies for industrial complex and large cities located in the coastal regions have been carried out Especially, the representation of atmospheric flow fields within a model domain is very important, because an adequate air quality simulation requires an accurate portrayal of the realistic three­dimensional wind fields. Therefore this study investigated effect of using high resolution terrain height data and FDDA with observational data to reflect local characteristics in numerical simulation. So the experiments were designed according to FDDA and the detail terrain height with 3sec resolution or not Case 30s was the experiment using the terrain height data of USGS without FDDA and Case 3s was the experiment using the detail terrain height data of Ministry of Environment without FDDA and Case 3sF was experiment using the detail terrain height data of Ministry of Environment with FDDA. The results of experiments were more remarkable, In Case 3s and Case 3sF, temperature indicated similar tendency comparing to observational data predicting maximum temperature during the daytime and wind speed made weakly for difference of terrain height Also Case 3sF had more adequate tendency than Case 3s at dawn.

A Mathematical Modeling of Two-Dimensional Unsteady Flow for Long Waves in a Harbor (항내(港內) 장주기파(長週期波) 해석(解析)을 위한 2차원(二次元) 부정류(不定流)의 수학적(數學的) 모형(模型))

  • Lee, Jong Tae;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.13-24
    • /
    • 1983
  • A mathematical model for the two-dimensional unsteady flow was developed by introducing Abbott's implicit finite difference operator and double sweep algorithm, which could be applied to simulate the respose of a harbor against the intrusion of long waves through the entrance connected to open sea. In order to improve its accuracy corresponding to the field phenomena, bottom resistance, Coriolis force, wind effect terms were included and wave direction and radiating effect was considered. The result of seiche test was always stable and the amplitude was accurate. Some phase shift was occured, but it could be reduced by using small values of Courant number and many points per a wave length as well. A comparision with the Ippen and Goda's theoritical and hydraulic experimental works was fulfilled.

  • PDF

An Implicit Method to Analysis Unsteady Flow (부정류의 IMPLICIT 수치해석)

  • 이종태
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.71-76
    • /
    • 1981
  • In order to make a numerical modeling for the one dimensional unsteady flow which expressed by Saint Venant partial differential equations, Preissmann's implicit scheme was used, and it's stability and accuracy was mentioned. By introducing recurrence relations make it possible to use double sweep algorithm. Effective parameters to the result were the values of the $\Delta$t/$\Delta$x, $\theta$ and the chezy coefficient. In oder to get numerical solutions with enough accuracy, $\Delta$t/$\Delta$x should not be far from the value of 1, and the criteria of the $\theta$ was 0.6<$\theta$<1.0 for the stability without condition. This model should be calibrated by real field data, and expected to be developed for the simulation of the river system and to the long wave analysis for one dimensional coastal zone problem.

  • PDF