• Title/Summary/Keyword: Flow Dynamic Design

Search Result 566, Processing Time 0.026 seconds

A Research on the Dynamic Pressure Estimation for the Control Law Design of High Speed Vehicle (초고속 비행체 제어기법 설계를 위한 비행체 동압 추정 기법 연구)

  • Park, Jungwoo;Kim, IkSoo;Park, Iksoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.953-956
    • /
    • 2017
  • This paper introduces general applications of vehicle's dynamic pressure information which is estimated during the flight. And a method to estimate the dynamic pressure for a high speed vehicle is suggested to sustain reliability of the flight under a high estimation accuracy of the information. The presented method is straightforward with simple relations of the compressible flow but is a still merited idea employed for the high speed vehicle control scheme with great accuracy.

  • PDF

Hierarchical Flow Control in a Dynamic Multi-stage Manufacturing System (동적인 다단계 제조시스템에서의 계층적 흐름 통제 방법)

  • Ro, In-Kyu;Kim, Jin-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.1
    • /
    • pp.103-118
    • /
    • 1995
  • This paper is concerned with developing flow control method for a dynamic multistage manufacturing system with interstage buffers and unreliable machines. For the effective control of proposed manufacturing system, the three-level hierarchical scheme is introduced. At the top level, we collect the system data and then, design the buffer sizes and hedging points. Short-term production rates are calculated at the middle level. At the bottom level, actual dispatching times are determined by Clear the Largest Buffer Level rule. The control method utilizes the material and the space in the buffers to alleviate the propagation of a failure to other machines in the system and keeps the production close to demand. Finally, a numerical example is provided to illustrate the mathematical control method developed and implemented in a dynamic manufacturing environment.

  • PDF

Study on Control Efficiency of Thermally Coupled Distillation Column for Reformate Fractionation Process (Reformate 분리공정에서의 열복합 증류탑 제어구조에 관한 연구)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3774-3778
    • /
    • 2012
  • A dynamic simulation of a fully thermally coupled distillation is conducted for the design of a possible operation scheme, and its performance is examined with an example process of reformate fractionation process. The outcome of the dynamic simulation indicates that the column can be operated by using a $3{\times}3$ control structure. The structure consists of three controlled variables of the compositions of overhead, side products and bottom and three manipulated variables of the flow rate of reflux, liquid split ratio between a main column and a prefractionator and steam.

A Study on the Frequency Response Characteristics of High Response Flow Control Servo Valve

  • Seo Jong Soo;Shin You Sik;Chun Young Heung;Jeong Hyo Min;Chung Han Shik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.131-140
    • /
    • 2004
  • The purpose of this research is to derive the principal design parameters governing the dynamic characteristics of the high response flow control servo valve. For this purpose, a numerical modeling of the servo valve system and a parameter sensitivity analysis to a frequency response characteristics were performed. As a result of these analysis, a basis for improvement of a dynamic characteristics of servo valve was arranged.

Design optimization of vibration isolation system through minimization of vibration power flow

  • Xie, Shilin;Or, Siu Wing;Chan, Helen Lai Wa;Choy, Ping Kong;Liu, Peter Chou Kee
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.677-694
    • /
    • 2008
  • A vibration power minimization model is developed, based on the mobility matrix method, for a vibration isolation system consisting of a vibrating source placed on an elastic support structure through multiple resilient mounts. This model is applied to investigate the design optimization of an X-Y motion stage-based vibration isolation system used in semiconductor wire-bonding equipment. By varying the stiffness coefficients of the resilient mounts while constraining the dynamic displacement amplitudes of the X-Y motion stage, the total power flow from the X-Y motion stage (the vibrating source) to the equipment table (the elastic support structure) is minimized at each frequency interval in the concerned frequency range for different stiffnesses of the equipment table. The results show that when the equipment table is relatively flexible, the optimal design based on the proposed vibration power inimization model gives significantly little power flow than that obtained using a conventional vibration force minimization model at some critical frequencies. When the equipment table is rigid enough, both models provide almost the same predictions on the total power flow.

Preliminary Form Design of Cable Structure using Computer Graphics (컴퓨터 그래픽스를 이용한 케이블 구조의 초기형태 설계)

  • Kim, Nam-Hee;Koh, Hyun-Moo;Hong, Sung-Gul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.375-382
    • /
    • 2011
  • Nowadays computer graphic softwares have opened a lot of potential by providing parametric modeling and generative algorithms which are useful not only to describe various geometrical shapes but also to implement a designer's intent in terms of modules systematically. This study has proposed a way of developing a module for generating preliminary structural configuration using such potential computer graphics. Especially parametric modeling and generative algorithm are utilized to define various design alternatives, and moreover use of dynamic graphics enables designers to generate a structural form on one side and a force flow diagram correspondingly provided on the other. This ultimately leads to rational preliminary design of a structural form considering its force flow.

Performance Analysis of UPFC by Simulation & Scaled Hardware Model Test (시뮬레이션과 축소모형에 의한 UPFC의 성능해석)

  • Han, Byung-Moon;Park, Ji-Yong;Jung, Jin-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2475-2477
    • /
    • 1999
  • This paper describes a simulation model and scaled hardware model to analyze the dynamic performance of Unified Power Flow Controller, which adjust flexibly the active and reactive power flow through the ac transmission line. The design of control system was developed using vector control method. The results of simulation and scaled hardware test show that the developed control system works accurately. And both models are very effective to analyze the dynamic performance of the Unified Power Flow Controller.

  • PDF

Analysis of the Dynamic Characteristics of the Underwater Discharge System using a Linear Pump (선형펌프 방식 수중발사 시스템의 동특성 해석)

  • Park, In-Ki;Jung, Chan-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.11-17
    • /
    • 2005
  • In this paper, the mathematical model of the underwater discharge system using a linear pump is derived and the suitable opening pattern of a flow control valve which satisfies the discharge performance requirements is obtained through the underwater discharge simulations. The simulation results show that the dynamic characteristics of a projectile are greatly affected by the opening pattern of the flow control valve, however, hardly by the diving depth. It is anticipated that the simulation model can be used to derive the design parameters and analyze the performance of the designed underwater discharge system using a linear pump.

Analysis of Dynamic Characteristics on Condenser for the Control of Air Conditioning Systems (공조기 제어를 위한 응축기의 동특성 해석)

  • Kim, J.D.;Yoon, J.I.;Higuchi, K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.386-396
    • /
    • 1996
  • The dynamic characteristics of a condenser are numerically studied for the control of air-conditioning systems. The important factors, such as the refrigerant flow rate and refrigerant temperature, air velocity and air temperature at the condenser inlet, are incorporated into the analysis. This study was focused on the analysis of dynamic responses by transfer function method in the condenser. Block diagrams were made through analytic transfer function, and dynamic responses are evaluated on Bode diagrams in the frequency response. These results may be used for determining an optimum design parameters in an actual component and total systems. Also, the mathematical models, frequency response and steady state response may be used to increase understanding, to obtain useful information for its commercialization, to evaluate the hardware and the optimum design parameters, the design control system and to determine the best controller setting for the refrigeration and air conditioning systems.

  • PDF

Frequency Response Characteristics of Air-Cooled Condenser in Case of Inputting Various Disturbances

  • Kim, Jae-Dol;Oh, Hoo-Kyu;Yoon, Jung-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.14-28
    • /
    • 2000
  • The frequency response characteristics of a condenser were numerically studied for the control of refrigeration and air conditioning systems. The important parameters, such as the refrigerant flow rate, refrigerant temperature, air velocity, and air temperature at the condenser inlet, were analyzed. Superheated vapor, two phase, and subcooled liquid domain in condenser can be described by using the energy balance equation and the mass balance equation in refrigerant and tube wall, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to disturbances can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Block diagrams were made based on the analytic transfer function; dynamic responses were evaluated in Bode diagrams on the frequency response. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. The results may be used for determining the optimum design parameters in actual components and entire systems. Also, the mathematical models, frequency response may be used to help understanding, evaluate optimum design parameters, design control systems and determine on setting the best controller for the refrigeration and air-conditioning systems.

  • PDF