• Title/Summary/Keyword: Floor-Impact Sound

Search Result 266, Processing Time 0.022 seconds

A Study on Floor Impact Sound Insulation Performance of Cross-Laminated Timber (CLT): Focused on Joint Types, Species and Thicknesses

  • Yeon-Su HA;Hyo-Jin LEE;Sang-Joon LEE;Jin-Ae SHIN;Da-Bin SONG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the floor impact sound insulation performance of Korean domestic Cross-Laminated Timber (CLT) slabs was evaluated according to their joint types, species and thicknesses in laboratory experiments. The sound insulation performance of the CLT has not been investigated before, thus, this study was conducted to quantify basic data on floor impact sound insulation performance of CLT slabs. 5-ply and 150 mm thick CLT panels made of 2 species, Larix kaempferi and Pinus densiflora, were used for the study. The CLT panels were assembled by 3 types of inter-panel joints to form floor slabs: spline, butt and half-lap. And the 150 mm thick Larix CLT slabs were stacked to the thicknesses of 300 mm and 450 mm. The heavy-weight floor impact sound insulation performance of the 150 mm CLT slabs were evaluated to be 70 dB for the Larix slabs and 71.6 dB for the Pinus slabs, and the light-weight floor impact sound insulation performance, 78.3 dB and 79.6 dB, respectively. No significant difference in the sound insulation performance was found between the slabs of the 2 species or among the 3 types of joints. The reduction of 1 dB in the heavy-weight floor impact sound and 1.6 dB in the light-weight floor impact sound per 30 mm increase in thickness were confirmed through the experiments. This study can be viewed as the basic research for the evaluation of floor impact sound insulation performance of CLT.

Comparison of Rating Methods for the Floor Impact Sound Insulation Performance (바닥충격음 차단성능 평가방법의 상호비교)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In this study, we compared and analyzed the floor impact sound insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels and arithmetic average. On-site floor impact sound pressure levels of living room and room are measured. The results of this study are 1)the rating using reversed A-weighting curve for heavy-weight impact sound's standard deviation is lower than that of light-weight impact sound, 2)the number of rating using A-weighted sound pressure levels and arithmetic average is larger than that of using reversed A-weighting curve, and 3)the number of rating using reversed A-weighting curve mainly depends on impact sound pressure level of 63Hz in heavy-weight impact sound.

  • PDF

A Study on the Sound Insulation Performance Elevation of Floor Structure that use Rubber chip in Apartment House (고무칩을 이용한 공동주택 바닥구조의 차음성능 향상에 관한 연구)

  • 박명길;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.237-332
    • /
    • 2002
  • We constructed ceiling structure and floor structure for elevation of sound insulation performance of concrete slab of apartment house. And, we wished to measure heavy floor impact sound level and light floor impact sound level of these structure. As the result, light floor impact sound level interception performance of concrete slab was measured by thing that construction work of gypsum baud is important. Heavy floor impact sound level interception performance was measured by thing that it is effective that construct to thickness about 30 millimeters on concrete Slav. It was measured effectively that heavy floor impact sound level interception performance constructs rubber chip to thickness about 30 millimeters on concrete Slav.

  • PDF

The Characteristics of Heavy-weight Impact Sound and Vibration According to the Change of Impact Force in An Apartment Building (충격력 변화에 따른 공동주택의 중량 충격음 및 진동 특성)

  • 서상호;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.304-307
    • /
    • 2004
  • To reduce the structure-born sound by floor impact source in an apartment building, it is necessary to identify the relationship between floor impact sound and vibration. Various impact sources which were made by a bang machine and an impact ball were used for measurement of impact sound and vibration. The experimental results show that the linear relationship between floor impact sound and vibration was in existence despite of various floor impact sources.

  • PDF

Performance Evaluation of the Floor Impact Sound Insulation in Steel Framed Modular House (강재프레임 모듈러주택의 바닥충격음 성능평가)

  • Chun, Young-Soo;Bang, Jong-Dae;Kim, Gap-Deug;Yoo, Song-Lee
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • This paper presents various attempts to secure the floor impact sound insulation performance on the dry floor system of steel framed modular house that lately attracted domestic attention. Test results show that in the condition of using dry floor system of D31(D32), the light-weight impact noise performance records the top level in the floor impact sound insulation performance grading system. the heavy-weight floor impact noise performance meets the minimum sound level limit in the floor impact sound insulation performance grading system that enacted regulation on housing construction standards.

Questionnaire Survey on Annoyance of Floor Impact Sound (층간소음 어노이언스에 대한 설문조사)

  • Jeong, Jeong-Ho;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.262-265
    • /
    • 2006
  • In order to investigate characteristics of floor impact sound generated in the apartment buildings, questionnaire survey was conducted for respondents living in apartments in 200t. Questions in the surrey were on the characteristics of real impact sounds, subjective annoyance and satisfaction on the heavy and light impact sources. From the survey results, it was found that most annoying time of a day and the space were 8 p.m. to midnight at living room. It was also revealed that the main source of the floor impact sound from the upper floor is a child's jumping and running at from six to nine. More than half of people were not satisfied on the floor impact isolation performance of their own apartments. The percentage of residents who were annoyed by the heavy-weight impact sound such as children's jumping and adult's walking was $5{\sim}10%$ lower than by light-weight impact sound. In addition, females being responded more annoyed by floor impact sound than males.

  • PDF

Correlation Between Dynamic Stiffness of Resilient Materials and Lightweight Floor Impact Sound Reduction Level (완충재 동탄성계수와 경량바닥충격음 저감량의 상관성)

  • Kim, Kyoung-Woo;Jeong, Gab-Cheol;Sohn, Jang-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.886-895
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material have a close relation with the floor impact sound reduction. In this study, to examine the relationship between dynamic stiffness and lightweight impact sound level, the dynamic stiffness and floor impact sound level of 51 resilient materials were measured. The impact sound level of each of these resilient materials, whose dynamic stiffness was measured, was measured before and after installation, and the level difference (${\Delta}L$) was analyzed. The result of test showed that the dynamic stiffness of resilient materials decreased, the lightweight impact sound level also decreased, and there was a correlation between the dynamic stiffness and the lightweight impact sound, especially in the low frequency domain.

Introduction of Floor Impact Sound Insulation Performance Test Lab. of T Company (T사 바닥충격음 실험동 소개)

  • Baek, Geon-Jong;Shin, Hoon;Song, Min-Jeong;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.17-20
    • /
    • 2008
  • To develop floor impact sound resilient materials of apartment house effectively, floor impact sound insulation performance test lab. was designed and constructed in T company. Introducing specification and basic performance of this lab. could be helpful in plan and design of another lab. Floor space size of this lab. is $4.2m{\times}5.5m$ and this size is similar with that of living room of usual apartment house's (about $100m^2$) and the height of lab. is 2.4m. Slab thickness is designed by 180mm. Frequency characteristics is similar to general apartment house. Reverberation time of sound receiving room displays 1.26sec in 125Hz by establishing sound-absorbing materials. For light weight impact sound insulation performance of concrete bare floor structure is estimated by $L_{i,AW}\;=\;73$ and for heavy weight is estimated by $L_{i,Fmax,AW}\;=\;50$. Sound pressure level distribution of sound receiving room is ranged very uniformly. With these results, floor impact sound resilient materials could be evaluated and the results could be trusted by comparison tests.

  • PDF

Evaluation of Floor Impact Sound Insulation Performance for Building Floors with Damping Materials (완충재 적용현장에서의 바닥충격음 차단성능 현황분석)

  • 김경우;양관섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.53-58
    • /
    • 2001
  • Floor impact sound has caused many acoustical complaints to the apartment building dwellers. The concrete floating floor construction is one of the most reasonable way to reduce floor impact sound. Recently, many damping materials are used in apartment buildings. In this study, to evaluate floor impact sound insulation performance, field tests were carried at five building floors with damping materials. The test results of impact sound insulation performance for five buildings showed good improvement in light weight impact sound after installation of damping materials, but heavy weight impact sound wasn't improved.

  • PDF

Floor Impact Sound Isolation Performance by Composition of Ceiling and Wall (천장 및 벽구성 방법이 바닥충격음 차단성능에 미치는 영향에 관한 연구)

  • Kim Kyoung-Woo;Kang Jea-Sik;Lee Seung-Eon;Yang Kwan-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.465-473
    • /
    • 2005
  • The impact sounds, generated by the walking of people, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The characteristics and level of this impact noise depends on the object striking the floor, on the basic structure of the floor, and on the finish materials of floor. The focus of this paper is to investigate the amount of improvement impact sound pressure level according to the change of the composition method of ceiling and wall. For this purpose, we tested impact sound pressure level of several cases which is the inserting of mineral wool, the increase of the thickness of air layer, the using of anti-vibration rubber in ceiling and attach the mineral wool on wall in the Floor Impact Sound Test Building of KICT. The results show that the composition method of ceiling and wall is more effective in the reduction of light weight impact sound specially in 125Hz and 250Hz.