• Title/Summary/Keyword: Flight operation

Search Result 641, Processing Time 0.03 seconds

Height perception of large airplane pilots during landing flare (대형 비행기 조종사의 착륙 조작 시의 높이지각)

  • Kim, Yong-Seok;Sohn, Young-Woo;Park, Soo-Ae;Kim, Chil-Young
    • Science of Emotion and Sensibility
    • /
    • v.10 no.4
    • /
    • pp.539-554
    • /
    • 2007
  • Pilots of large airplanes have to land their airplanes with insufficient visual information because of high approach speed, high vertical velocity and high location or altitude of the cockpits from the runway intending to touch down. This study verifies that, due to the insufficient information, large airplane pilots can't exactly perceive height of their airplanes during the flare. Study 1 explored whether it's possible for the pilots to accurately perceive height with the static visual cues only. We showed them pictures of the runway taken from the pilot's pionts of view and asked them to assess the height of the airplanes. They determined exact height of the airplanes at the height of 85 feet, but they could not, at lower than 55 feet which is the flare preparation altitude. Study 2 explored whether it's possible for the pilots to accurately perceive height when dynamic cues were added to the static visual cues. We showed them videos of the runway taken from the pilot's pionts of view. With more cues they determined exact height of the airplanes at the height of 50 feet, but they could not, at the altitude of lower than 30 feet which is the flare altitude. As experience is believed to be a major factor which affects interpretation of the visual cues, we compared the accuracy of the assessment of the experienced captions and that of the in-experienced first officers. We found there was no significant difference between them.

  • PDF

A Study on the Applications of Airspace Design Criterions Affecting on the Flight Safety (비행안전에 영향을 미치는 공역설계기준의 적용에 관한 연구)

  • 양한모;유광의
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.7-19
    • /
    • 2003
  • The airspace has to be designed considering the flight safety and economic efficiency of aircraft operators. The International Civil Aviation Organization(ICAO) published standards and recommended practices for safe design of the airspace. Each contracting country must follow the ICAO standards in designing the airspace for the utilization of civil aviation. Normally each member establishes its own standards and national aviation law for the safe and efficient design of the airspace, regarding the ICAO standards. However, our government has not developed yet clear and detailed standards and regulation system for airspace design. This might lead to aviation accidents and disputes between operators of aviation system This study is to review the characteristics of ICAO standards and a legal problem related to application of international standards for airspace design. Specifically this research analyzed the case of airspace design and operation of a domestic airport. The results of analysis are as follow: (1) per the safety of civil aviation, it is very required to establish national regulation system to follow ICAO standards in designing airspace, (2) It is also necessary to establish separate procedure for civil aircraft in military air base, when the aerodrome is co-used by military and civil aircraft. If the same procedure for military aircraft is applied to civil aircraft, it is necessary to make clear what the design concept is, (3) and the differences from ICAO standards have to be publicly known.

Negligence theory of Aviation accident with reference to the japanese aviation accident precedent (항공 사고에서의 과실 이론 - 일본 항공 사고 판례를 중심으로 -)

  • Hwang, Ho-Won;Ham, Se-Hun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.23 no.2
    • /
    • pp.115-136
    • /
    • 2008
  • The development of the aviation technology is beyond the people's imagination. For example, with some exaggeration, If the autopilot engage upon take off, You will realize that you are on the centerline of the foggy JFK runway 13R after 15 hours with only once or twice of intervention. But the more aviation technology develops, the more responsible the pilot will be who has the final authority of the aviation safety. In the JAL 706 accident caused by unidentified reason, the pilot increased pitch abruptly and overrode the control from the autopilot. The result of this process made the death of a flight attendant and some injuries of a few passengers. The district court found the pilot not guilty at the first trial on the ground that the control override was not connected to the possibility of foresight and avoidance of the human death. The pilot was proved to be innocent through the analysis of the DFDR and ADAS that the override did not precede the unidentified pitch up motion. The judicial precedent related to aviation accidents in Korea requires pilots' absolute and extended care compared to the ordinarily prudent or reasonably careful behaviors in the vehicle and medical accidents. Although there is some controversy about the standard care, the care required in the actual operation of high tech aircraft by a pilot should include objective and standard care and be judged by analysis of the scientific data. Although the pilot maintained the unusual hi speed that doesn't have safety margin and descended under turbulence in case of the JAL 706 accident, the court negatived its relation to the cause of pitch up. Also, the override of the control after initial pitch up might have caused the possibility of the death and injury, but the court denied it. Because of this complex cause of the aviation accidents, it is important for a court to figure out the core reason of the event and casual relationship with the pilot Now, It is required that the judgement of negligence in the aviation accidents should include an objective care with scientific data from simulated circumstances(or a simulator) as the Japanese court not from the theory of vehicle's negligence.

  • PDF

The Legal Study of Prohibited Items on Aeroplane for the Aircraft Safety and Security (항공안전보장.질서유지를 위한 항공기반입금지 물품 관리.감독에 관한 입법적 개선방안)

  • Chang, In-Ho
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.1
    • /
    • pp.33-66
    • /
    • 2014
  • While the numbers of overseas travelers has been increased rapidly each year, the numbers of passengers in the aircraft also has continued to be increased gradually. In the mist of these increasing numbers, such accidents as threatening an aircraft safety like riot, aircraft hijacking and terrorism have happened constantly. In these circumstances, South Korean government has prescribed "Aviation on Security Act" in accordance with the Convention on International Civil Aviation and other international agreements. This act aims to prevent illegal activities and illegal items on the aircraft to ensure the safety and security of civil aviation. However, this act is not sufficiently regulating all the illegal crimes and illegal items on the flight. For the worse, there is a lack of effective supervisory capacity. Likewise, the inherent problems of the current laws relating to the prevention of the illegal items on the aircraft are appearing on the surface continually. Above all, illegal items on the aircraft are directly connected to the issue of aviation safety and security as well as a safe utilization of the flight service. Thus, when there occurs a serious accident on board, it surely would be led to a huge economic loss not mentioning the loss of lives following the accident. Therefore safety of the flight passengers cannot be guaranteed without ensuring the safety of aircraft facilities and good supervisory mechanism of illegal items on the aircraft. Accordingly, establishing a safe operation order tends to influence economy and tourism of a country in no small measure. Therefore, it is an urgent issue to settle down a reasonable and adequate supervisory regulations regarding the prevention of the illegal items on the aircraft. Consequently, in this article, I studied on a reasonal and effective mechanism to control the prevention of the illegal items and illegal acts on the aircraft in order to ensure a safety and security of civil aircraft.

Evolution of Aviation Safety Regulations to cope with the concept of data-driven rulemaking - Safety Management System & Fatigue Risk Management System

  • Lee, Gun-Young
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.345-366
    • /
    • 2018
  • Article 37 of the International Convention on Civil Aviation requires that rules should be adopted to keep in compliance with international standards and recommended practices established by ICAO. As SARPs are revised annually, each ICAO Member State needs to reflect the new content in its national aviation Acts in a timely manner. In recent years, data-driven international standards have been developed because of the important roles of aviation safety data and information-based legislation in accident prevention based on human factors. The Safety Management System and crew Fatigue Risk Management Systems were reviewed as examples of the result of data-driven rulemaking. The safety management system was adopted in 2013 with the introduction of Annex 19 and Chapter 5 of the relevant manual describes safety data collection and analysis systems. Through analysis of safety data and information, decision makers can make informed data-driven decisions. The Republic of Korea introduced Safety Management System in accordance with Article 58 of the Aviation Safety Act for all airlines, maintenance companies, and airport corporations. To support the SMS, both mandatory reporting and voluntary safety reporting systems need to be in place. Up until now, the standard of administrative penal dispensation for violations of the safety management system has been very weak. Various regulations have been developed and implemented in the United States and Europe for the proper legislation of the safety management system. In the wake of the crash of the Colgan aircraft, the US Aviation Safety Committee recommended the US Federal Aviation Administration to establish a system that can identify and manage pilot fatigue hazards. In 2010, a notice of proposed rulemaking was issued by the Federal Aviation Administration and in 2011, the final rule was passed. The legislation was applied to help differentiate risk based on flight according to factors such as the pilot's duty starting time, the availability of the auxiliary crew, and the class of the rest facility. Numerous amounts data and information were analyzed during the rulemaking process, and reflected in the resultant regulations. A cost-benefit analysis, based on the data of the previous 10 year period, was conducted before the final legislation was reached and it was concluded that the cost benefits are positive. The Republic of Korea also currently has a clause on aviation safety legislation related to crew fatigue risk, where an airline can choose either to conform to the traditional flight time limitation standard or fatigue risk management system. In the United States, specifically for the purpose of data-driven rulemaking, the Airline Rulemaking Committee was formed, and operates in this capacity. Considering the advantageous results of the ARC in the US, and the D4S in Europe, this is a system that should definitely be introduced in Korea as well. A cost-benefit analysis is necessary, and can serve to strengthen the resulting legislation. In order to improve the effectiveness of data-based legislation, it is necessary to have reinforcement of experts and through them prepare a more detailed checklist of relevant variables.

Performance Testing of an Integrated Hybrid Actuator (집적형 하이브리드 구동장치의 성능시험)

  • Xuan, Zhefeng;Jin, Tailie;Goo, Nam Seo;Bae, Byung-Woon;Kim, Tae-Heun;Ko, Han Seo;Yoon, Ki-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder via a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, operation principle and performance testing of the hybrid actuator were introduced. Output velocities have been measured in both loaded case and not loaded case and the blocking force also has been measured in external loaded case. The maximum velocity of the actuator is 53.3 mm/s, blocking force is 240.7 N and corresponding power output is 3.2 W.

Design of Small Optical Tracker for Use in the Proving Ground (시험장 환경에 적합한 소형 광학추적기 설계)

  • Park, Sanghyun
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.224-231
    • /
    • 2020
  • An optical tracking plays an important role for measurement operation, as it is responsible for low altitude measurements that are difficult to obtain with radar systems. Since the existing optical tracking systems have not been developed in the proving ground itself so far, it is difficult to modify them to fit the environment of the proving ground. Also, they are designed as a vehicle-mounted type, so there is a limitation in selecting an optimal site. The in-house developed small optical tracking system is designed with a simple configuration to overcome these shortcomings and makes it possible for operators to operate the system at any place in the proving ground. In addition, there has been a need of developing small optical trackers by ourselves to be prepared for future research so that artificial intelligence (AI) can be applied to the optical tracking systems. In this paper, we described the design concept of the small optical tracker, the configuration of the components to implement the basic tracking function, and showed the results of the simulation to set the configuration of the equipment according to the characteristics of the flight targets.

A Research of Passengers' Perception on Benefit to Repurchase Intention through Price Reliability: Focusing on Comparing National Carrier and Foreign Carrier between Incheon-Dubai Air Route (항공여객이 인식하는 편익이 가격신뢰를 매개로 재구매 의도에 미치는 영향 : 인천-두바이 구간 국적항공사와 외국항공사 비교를 중심으로)

  • Lee, Gun-Young;Kim, Soo-Jung;Jang, Ji-Seung
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.173-183
    • /
    • 2020
  • This research focused on such a passenger sample that used to fly between Incheon int'l airport(ICN) and Dubai int'l airport(DXB) using either a national carrier or gulf carriers because the route between ICN and DXB is one of the international air routes with the toughest competition under the global pressure of open air transport market. Based on the results from the empirical research, this paper proposed a competitive advantage which a national carrier must have to cope with global competition under the open sky policies and implications for sustainable strategies of them. National carrier passengers perceived product benefits had a significant positive effect on price reliability in spite of lower price competitiveness. Following the empirical analysis results, it was proven a national carrier should try to improve product benefit sought by passengers to maintain sustainable competitive advantage in the market against foreign airlines.

Shape Characteristics of Exhaust Plume of Dual-Stage Plasma Thruster using Direct-Current Micro-Hollow Cathode Discharge (직류 마이크로 할로우 음극 방전을 이용한 이단 마이크로 플라즈마 추력기의 배기 플룸의 형상 특성)

  • Ho, Thi Thanh Trang;Shin, Jichul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.54-62
    • /
    • 2016
  • Micro plasma thruster (${\mu}PT$) was studied experimentally with a dual-stage micro-hollow cathode discharge (MHCD) plasma. Electrostatic-like acceleration exhibiting more directional and elongated exhaust plume was achieved by a dual layer MHCD at the total input power less than 10 W with argon flow rate of 40 sccm. V-I characteristic indicated that there was an optimal regime for dual-stage operation where the acceleration voltage across the second stage remained constant. Estimated exhaust plume length showed a similar trend to the analytic estimate of exhaust velocity which scales with an acceleration voltage. ${\mu}PT$ with multiple holes exhibited similar performance with single-hole thruster indicating that higher power loading is possible owing to decreased power through each hole. Boltzmann plot of atomic argon spectral lines showed average electron excitation temperature of about 2.6 eV (~30,170 K) in the exhaust plume.

A Numerical Analysis on Transient Temperatures of Fuel and Oil in a Military Aircraft (항공기내 연료 및 오일온도 변화에 대한 수치해석적 연구)

  • Kim, Yeong-Jun;Kim, Chang-Nyeong;Kim, Cheol-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1153-1163
    • /
    • 2002
  • A transient analysis on temperatures of fuel and oil in hydraulic and lubrication systems in an aircraft was studied using the finite difference method. Numerical calculation was performed by an explicit method with modified Dufort-Frankel scheme. Among various missions, air superiority mission was considered as a mission model with 20% hot day ambient condition in subsonic region. The ambience of the aircraft was assumed as turbulent flow. Convective heat transfer coefficient were used in calculating heat transfer between the aircraft surface and the ambience. For an aircraft on the ground, an empirical equation represented as a function of free-stream air velocity was used. And the heat transfer coefficient for flat plate turbulent flow suggested by Eckert was employed for in-flight phases. The governing equations used in this analysis are the mass and energy conservation equations on fuel and oils. Here, analysis of fuel and oil temperature in the engine was not carried out. As a result of this analysis, the ground operation phase has shown the highest temperature and the largest rate of temperature increase among overall mission phases. Also, it is shown that fuel flow rate through fuel/oil heat exchanger plays an important role in temperature change of fuel and oil. This analysis could be an important part of studies to ensure thermal stability of the aircraft and can be applicable to thermal design of the aircraft fuel system.