• Title/Summary/Keyword: Flight Phase

Search Result 327, Processing Time 0.033 seconds

Fluttering Characteristics of Free-falling Plates (자유낙하하는 판의 fluttering 특성 연구)

  • Hong, Seulki;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • Abstract In the present study, the characteristics of kinematics and dynamics in the fluttering motion of free-falling plates are investigated at Reynolds number of $10^5$. We record quasi-two-dimensional trajectories of free-falling plates with and without superhydrophobic coating using high-speed camera, and compute the drag and lift forces by trajectory analysis. Translational and angular velocities are modeled as harmonic functions with specific phase differences. In particular, periodic mass elevations near turning points are explained using the suggested models. At each turning point, a sudden drop in lift and a rapid increase in drag occur simultaneously due to fast increase in angle of attack. However, the lift is increased over the buoyancy-corrected weight of plate during gliding flight, resulting in periodic mass elevations near turning points. Superhydrophobicity is shown to increase lift but to reduce drag on a fluttering plate, resulting in the decrease of mean descent speed.

Development of New Surfaces and Materials for Separation Science

  • Linford, Matthew R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.59.1-59.1
    • /
    • 2015
  • In the Linford group at Brigham Young University we have recently developed three new sets of materials for three different areas of separations science: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and solid phase microextraction (SPME). First, via microfabrication we have grown patterned carbon nanotube (CNT) forests on planar substrates that we have infiltrated with inorganic materials such as silicon nitride. The coatings on the CNTs are conformal and typically deposited in a process like low pressure chemical vapor deposition. The resulting materials have high surface areas, are porous, and function as effective separation devices, where separations on our new TLC plates are typically significantly faster than on conventional devices. Second, we used the layer-by-layer (electrostatically driven) deposition of poly (allylamine) and nanodiamond onto carbonized poly (divinylbenzene) microspheres to create superficially porous particles for HPLC. Many interesting classes of molecules have been separated with these particles, including various cannabinoids, pesticides, tricyclic antidepressants, etc. Third, we have developed new materials for SPME by sputtering silicon onto cylindrical fiber substrates in a way that creates shadowing of the incoming flux so that materials with high porosity are obtained. These materials are currently outperforming their commercial counterparts. Throughout this work, the new materials we have made have been characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, transmission electron microscopy, etc.

  • PDF

Reference Trajectory Optimization of a Launch Vehicle M-3H-3 for Scientific Missions (과학위성 발사체 M-3H-3의 기준궤적 최적화)

  • Lee, Seung-H.;Choi, Jae-W.;Lee, Jang-G.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.361-365
    • /
    • 1991
  • The problem being considered here is the determination of optimal guidance laws for a launch vehicle for scientific missions. The optimal guidance commands are determined in the sense that the least amount of fuel is used. A numerical solution was obtained for the case where the position and velocity state variables satisfy a specified constraint at the time of thrust cutoff. The method used here is based on the Pontryagin's maximum principle. This is the method of solving a problem in the calculus of variations. In particular, it applies to the problem considered here where the magnitude of the control is bounded. Simulations for the optimal guidance algorithm, during the 2nd and the 3rd-stage flight of the Japanese rocket M-3H-3, are carried out. The results show that the guided trajectory that satisfying the terminal constraints is optimal, and the guidance algorithm works well in the presence of some errors during the 1st-stage pre-programmed guidance phase.

  • PDF

Kinematical Analysis of the YEGA Motion on the Uneven Parallel Bars (이단 평행봉 YEGA 동작의 운동학적 분석)

  • Lee, Young-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.111-125
    • /
    • 2005
  • This study was intended to assist athletes in having a technical understanding of the Yega motion and provide basic material for improving their competitive ability by analyzing the kinematic variable of the Yega motion during the competition of the uneven parallel bar of female gymnastics. For this purpose, the game of female gymnastics participating in the uneven parallel bar game was personally videotaped using the DLT(direct linear transformation) method. An attempt was made to make a comparative analysis of the Yega motion by dividing the final first to third places into the upper group('A' group) and the sixth to eighth places into the lower group('B' group). Based on the results of actual analysis on the scenes of actual game, the following conclusion was concluded: 1. Athletes in the 'A' group showed the shorter required time on the flight phase(P3) than counterparts in the 'B' group. 2. Athletes in the 'A' group showed the little width in the horizontal displacement of the center of gravity than counterparts in the 'B' group. But athletes in the 'A' group exhibited the somewhat greater relative vertical height of the center of the body. 3. Athletes in the 'A' group showed the greater resultant velocity at the lowest point of the center of the body(E2) and at the point in time of release(E3) compared to counterparts in the 'B' group.

3-Dimensional Trajectory Optimization and Explicit Guidance for a Satellite Launch Vehicle with Yaw Maneuver (횡방향 기동을 하는 위성발사체의 3차원 궤적최적화와 직접식 유도기법)

  • No, Ung-Rae;Kim, Yu-Dan;Park, Jeong-Ju;Tak, Min-Je
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.613-623
    • /
    • 2002
  • Ascent trajectory optimization and explicit guidance problems for a satellite launch vehicle with yaw maneuver in a 3-dimension are considered. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the inertial pitch and yaw attitude control variables, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn and range safety conditions are imposed. An explicit inertial guidance algorithm in the exoatmospheric phase is also presented. The guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. The liquid propelled Delta 2910 launch vehicle is used as a numerical model.

Oxidation of fatty acid may be enhanced by a combination of pomegranate fruit phytochemicals and acetic acid in HepG2 cells

  • Kim, Ji Yeon;Ok, Elly;Kim, You Jin;Choi, Kyoung-Sook;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.153-159
    • /
    • 2013
  • We investigated whether the combination of phytochemicals and acetic acid in the form of fruit vinegar provides an additive effect on changes of mRNA levels related to fatty acid oxidation in human hepatocyte (HepG2). Among the seven fruit vinegars (Rubuscoreanus, Opuntia, blueberry, cherry, red ginseng, mulberry, and pomegranate) studied, treatment of HepG2 with pomegranate vinegar (PV) at concentrations containing 1 mM acetic acid showed the highest in vitro potentiating effect on the mRNA expression levels of peroxisome proliferator-activated receptor ${\alpha}$, carnitinepalmitoyl transferase-1, and acyl-CoA oxidase compared to the control group (P < 0.05). Reversed-phase liquid chromatography in combination with quadrupole time-of-flight mass spectrometry analysis revealed four potential compounds (punicalagin B, ellagic acid, and two unidentified compounds) responsible for altered gene expression in HepG2 cells treated with PV as compared with the others. Further investigations are warranted to determine if drinking PV beverages may help to maintain a healthy body weight in overweight subjects.

A Study on Countermeasures to Prevent Unstable Approach to Improve Aviation Safety (항공안전도 향상을 위한 불안정 접근 방지대책)

  • Jeon, Je-hyung;Song, Jehwan;Jung, Chang-jae;Lim, se-hoon;Song, Byung-Heum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • Aviation industry is growing rapidly, and this growth is expected to continue. However, aircraft accident rate is still high, and 65 percent of accidents occur during landing phase due to unstable approach. Therefore, this research analyzed causes and countermeasures of unstable approach. In order to derive countermeasures, this study selected P International Airport as an example case. In addition, this research analyzed A airline's FOQA data, regional Standard Operating Procedures, and 5 years of environmental factors to identified correlation of those contributing factors. In conclusion, his research concluded following results. First of all, because of P International Airport's geological features, pilots are required to conduct Circling Approach, and this advanced maneuver increases workload at the final stage of flight. Secondarily, meteorological factors such as crosswind, seasonal rain front, local visibility contributes unstable approach. Lastly, these geological and meteorological factors are interrelated, and this uncommon environment can decrease circumstantial judgement ability of pilots and jeopardize aviation safety. As a consequence, it is recommended to reinforce the Crew Resource Management and Threat & Error Management systems so that pilots can perceive identical safety target.

Application of an Adaptive Autopilot Design and Stability Analysis to an Anti-Ship Missile

  • Han, Kwang-Ho;Sung, Jae-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.78-83
    • /
    • 2011
  • Traditional autopilot design requires an accurate aerodynamic model and relies on a gain schedule to account for system nonlinearities. This paper presents the control architecture applied to a dynamic model inversion at a single flight condition with an on-line neural network (NN) in order to regulate errors caused by approximate inversion. This eliminates the need for an extensive design process and accurate aerodynamic data. The simulation results using a developed full nonlinear 6 degree of freedom model are presented. This paper also presents the stability evaluation for control systems to which NNs were applied. Although feedback can accommodate uncertainty to meet system performance specifications, uncertainty can also affect the stability of the control system. The importance of robustness has long been recognized and stability margins were developed to quantify it. However, the traditional stability margin techniques based on linear control theory can not be applied to control systems upon which a representative non-linear control method, such as NNs, has been applied. This paper presents an alternative stability margin technique for NNs applied to control systems based on the system responses to an inserted gain multiplier or time delay element.

Canard-Leading Edge Flap Scheduling for the Maneuverability Enhancement of a Fighter Class Aircraft (전투기급 항공기 기동성 증대를 위한 카나드-앞전플랩 스케줄링)

  • Chung, In-Jae;Kim, Sang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.165-170
    • /
    • 2007
  • During the conceptual design phase of a wing-body-canard type fighter class aircraft, as a method of maneuverability enhancement for an aircraft, effects of canard-leading edge flap scheduling have been studied. In this study, corrected supersonic panel method has been used to predict the drag polar characteristics due to canard-leading edge flap deflections in the high speed regime. Utilizing the predicted drag polar curves, the canard-leading edge flap scheduling laws have been established. These scheduling laws are the relation of canard-leading edge flap deflections and the flight conditions to maximize the lift-drag ratio. Based on the results obtained from the canard-leading edge flap scheduling, the present method has shown to be useful to enhance the maneuverability of wing-body-canard type fighter class aircraft.

Experiment on Multi-Dimensioned IMM Filter for Estimating the Launch Point of a High-Speed Vehicle (초고속 비행체의 발사원점 추정을 위한 다중 IMM 필터 실험)

  • Kim, Yoon-Yeong;Kim, Hyemi;Moon, Il-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.18-27
    • /
    • 2020
  • In order to estimate the launch point of a high-speed vehicle, predicting the various characteristics of the vehicle's movement, such as drag and thrust, must be preceded by the estimation. To predict the various parameters regarding the vehicle's characteristics, we build the IMM filter specialized in predicting the parameters of the post-launch phase based on flight dynamics. Then we estimate the launch point of the high-speed vehicle using Inverse Dynamics. In addition, we assume the arbitrary error level of the radar for accuracy of the prediction. We organize multiple-dimensioned IMM structures, and figure out the optimal value of parameters by comparing the various IMM structures. After deriving the optimal value of parameters, we verify the launch point estimation error under certain error level.