• 제목/요약/키워드: Flexural toughness

검색결과 365건 처리시간 0.027초

탄소섬유직물/에폭시 복합재의 혼합모우드 층간파괴 거동 (Mixed Mode Interlaminar Fracture Behaviors of Carbon Fabric/Epoxy Composites)

  • 윤성호;허광수;오진오
    • 한국항공우주학회지
    • /
    • 제35권1호
    • /
    • pp.58-65
    • /
    • 2007
  • MMF 시험을 적용하여 혼합모우드 비율을 20%~90%의 범위 내에서 변화시키면서 탄소섬유직물/에폭시 복합재의 혼합모우드 층간파괴 거동을 조사하였다. 혼합모우드 층간파괴 거동을 예측하기 위해 NL점과 5% offset점에 근거한 혼합모우드 층간파괴 결정식을 제시하였다. 파단면 양상과 균열진전 거동은 이동식 현미경과 전자현미경을 통해 조사하였다. 연구결과에 따르면 혼합모우드 층간파괴 거동은 NL점에 근거한 경우 매개변수 m=1.5와 n=0.5, 5% offset점에 근거한 경우 매개변수 m=2와 n=3인 혼합모우드 층간파괴 결정식에 의해 잘 예측되어진다. 파단면 양상과 균열진전 거동은 혼합모우드 비율에 매우 민감하게 변하며 MMF 시험은 혼합모우드 층간파괴인성의 평가에 성공적으로 적용됨을 알 수 있었다.

SHS 화학로법에 의해 합성된 WC 분말과 상용 WC 분말을 이용한 $WC-Co-Al_2O_3$ 세라믹 복합체의 제조 및 그 기계적 특성에 관한 연구 (A Study on the Fabrication and Mechanical Properties of $WC-Co-Al_2O_3$ Ceramic Composites Using WC Powders Synthesized by SHS Method and Commercial WC Powders)

  • 이강렬;조덕호;이형복;박성
    • 한국세라믹학회지
    • /
    • 제32권12호
    • /
    • pp.1392-1400
    • /
    • 1995
  • WC-10wt%Co-Al2O3 ceramic composites, using both the SHS (Self-propagating High Temperature Synthesis) synthesized WC powder method and commercial WC powder, were prepared by varing WC-Co/Al2O3 vol% ratio and sintering temperature (1350℃∼1650℃) for 1 hr in Ar atmosphere. Mechanical characterization has been investigated by Instron meterial testing system and Vicker's hardness test. Compositional and structural chracterizations were carried out by energy-dispersive analysis of X-ray (EDAX) data and scanning electron microscope (SEM). Electrical characterization was carried out by the electrical resistivity measurement using 4-point probe method. As sintering period increased and Al2O3 contents decreased in WC-10wt%Co-Al2O3 ceramic composite, shrinkage and relative density increased, resulting in maximum values at 1600℃. Also the major matrix phase changed with increasing Al2O3 content from 0 to 100 vol%. It was also identified by SEM, EDAX, and electrical resistivity measurement. Based on the results of analysis of flexural strength, toughness and hardness, the mechanical properties of WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were better than those WC-10wt%Co-Al2O3 ceramic composites using commercial WC powder because WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were sintered very well due to small initial particle size. By the addition of 40 vol% Al2O3 [60(WC=10wt%Co)-40Al2O3], it was possible to obtain a proper candidate as a superalloy.

  • PDF

Optical, Mechanical and Tribological Properties of Boronnitride Dispersed Silicon Nitride Ceramics

  • Joshi, Bhupendra;Fu, Zhengyi;Niihara, Koichi;Lee, Soo-Wohn
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.444-449
    • /
    • 2010
  • Transparent ceramics are used in new technology because of their excellent mechanical properties over glasses. Transparent ceramics are nowadays widely used in armor, laser windows, and in high temperature applications. Silicon nitride ceramics have excellent mechanical properties and if transparent silicon nitride is fabricated, it can be widely used. h-BN has a lubricating property and is ductile. Therefore, adding h-BN to silicon nitride ceramics gives a lubricating property and is also machinable. Translucent silicon nitride was fabricated by hot-press sintering (HPS) and 57% transmittance was observed in the near infrared region. A higher wt. % of h-BN in silicon nitride ceramics does not favor transparency. The optical, mechanical, and tribological properties of BN dispersed polycrystalline $Si_3N_4$ ceramics were affected by the density, ${\alpha}:{\beta}$-phase ratio, and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of $\alpha-Si_3N_4$, AlN, MgO, and h-BN at $1850^{\circ}C$. The composite contained from 0.25 to 2 wt. % BN powder with sintering aids (9% AlN + 3% MgO). A maximum transmittance of 57% was achieved for the 0.25 wt. % BN doped $Si_3N_4$ ceramics. Fracture toughness increased and wear volume and the friction coefficient decreased with an increase in BN content. The properties such as transmittance, density, hardness, and flexural strength decreased with an increase in content of h-BN in silicon nitride ceramics.

저가의 $\beta$-상 분말을 사용한 질화규소의 소결 및 기계적 특성 (Sintering and Mechanical Properties of Silicon Nitride Prepared with a Low-cost Silicon Nitride Powder)

  • 박우윤;박동수;김해두;한병동
    • 한국세라믹학회지
    • /
    • 제38권11호
    • /
    • pp.987-992
    • /
    • 2001
  • 내화물 등급의 저가 질화규소 분말을 분석 및 가공한 후, 소결조제을 첨가하여 가스압 소결하였다. 원료분말에는 다량의 free Si가 있었으며 Fe, Al, Ca등의 불순물도 각각 0.72wt%, 0.5wt%, 0.31wt%로 다량 존재하였다. 산소와 탄소의 함량도 각각 3.3wt%와 0.4wt%로 많았으며, 96%의 $\beta$-상과 4%의 $\alpha$-상으로 구성하였다. 원료 분말을 탈철처리 및 질화처리 하여 소결조제인 6wt% yttria와 2wt% alumina를 첨가하고, 1823K-2133 K의 온도 범위에서 1시간씩 소결하여 소결거동을 조사하였다. 또, 2123K에서 2시간동안 소결하여 충분히 치밀화된 소결체를 얻었다. 비교를 위하여 상용 질화규소 분말을 같이 소결하여 소결거동과 기계적 특성 등을 조사하였다. 저가의 분말을 상용 분말보다 치밀화 속도는 늦었다. 충분히 치밀화된 저가 분말의 소결체는 낮은 aspect rtio를 갖는 조대 결정립들이 다수 존재하였으며, 경도, 파괴인성, 꺽임강도, 내열 충격성 등이 상용 분말의 소결체 보다 떨어졌다.

  • PDF

침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 미세구조 및 기계적 특성 (Microstructures and Mechanical Properties of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제27권8호
    • /
    • pp.991-1003
    • /
    • 1990
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent, various types of metal hydroxides were obtained by single precipitation(series A) and co-precipitation(series B) method at the pH condition between 7 and 11. Fine Al2O3-ZrO2 powders were prepared at optimum calcination condition and the effects of ZrO2 on microstructures and mechanical properties of Al2O3 were investigated. The composition of Al2O3/ZrO2 composites wax fixed as Al2O3-15 v/o ZrO2(+3m/o Y2O3). ZrO2 limited the grain growth of Al2O3 and increased grain size homogeneity of Al2O3 more effectively than MgO.Flexural strength values in Al2O3 and Al2O3/ZrO2 composites were 340-430 MPa and 540-820 MPa, respectively, and the effect of strength improvement showed 20-50% by adding ZrO2 to Al2O3. Fracture toughness of Al2O3/ZrO2 composites was improved by stress-induced phase transformation of tetragonal ZrO2 and toughening effect by microcrack was not observed. Also, ZrO2 particles located at Al2O3 grain junction contributed to toughening, while spherical ZrO2 particles located within Al2O3 grain did not contribute to toughening. Weibull moduli of Al2O3 ceramics and Al2O3/ZrO2 composites of series A and series B were 4.34, 5.17 and 9.06, respectively. Above 0.5 of failure probability, strength values in Al2O3 ceramics and Al2O3/ZrO3 composites of series A and series B were above 400 MPa, 700 MPa and 650 MPa, respectively.

  • PDF

SIC 도전성 세라믹 복합체의 특성에 미치는 천이금속의 영향 (Effect of Transition Metal on Properties of SiC Electroconductive Ceramic Composites)

  • 신용덕;오상수;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권7호
    • /
    • pp.352-357
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% TiB$_2$ and using 61vo1.% SiC - 39vo1.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 180$0^{\circ}C$ for 4 hours. Reactions between SiC and transition metal TiB$_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), TiB$_2$ and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-TiB$_2$, and SiC(2H), WC and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-WC composites. $\beta$\$\longrightarrow$$\alpha$-SiC phase transformation was ocurred on the SiC-TiB$_2$, but $\alpha$\$\longrightarrow$$\beta$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the vicker's hardness, the flexural strength and the fracture toughness showed respectively value of 96.2%, 13.34GPa, 310.19Mpa and 5.53Mpaㆍml/2 in SiC-WC composites. The electrical resistivity of the SiC-TiB$_2$ and the SiC-WC composites is all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$. 2.64${\times}$10-2/$^{\circ}C$ of PTCR of SiC-WC was higher than 1.645${\times}$10-3/$^{\circ}C$ of SiC-TiB$_2$ composites.posites.

반원형 강섬유보강 숏크리트의 휨인성 특성에 관한 연구 (A study on the flexural toughness characteristics of the half-circle type steel fiber reinforced shotcrete)

  • 지영환;정지수;정춘교;이승호
    • 한국터널지하공간학회 논문집
    • /
    • 제13권2호
    • /
    • pp.83-96
    • /
    • 2011
  • 현재 국내터널에 주로 사용되는 공법은 NATM(New Austrian Tunneling Method)으로 원지반의 강도를 유지하고 보강하는 수단으로 록볼트, 숏크리트, 지보재를 이용하여 암반굴착 직후 원지반의 지지능력을 최대로 활용하여 지반을 안정화시킴으로 터널의 안전성을 유지시키는 공법이다. 과거에는 철망(wire mesh)보강 숏크리트가 주로 사용되었으나 시공기술의 발전을 통한 공기향상을 목적으로 현재는 강섬유보강 숏크리트(steel fiber reinfored shotcrete)가 국내 대다수 터널현장에 사용되고 있다. 그러나 터널 현장의 강섬유보강 숏크리트가 시공된 벽면의 강섬유 혼입량을 조사한 결과, 대부분 예상보다 부족한 것으로 측정되어 이에 대한 시방기준의 수립과 강섬유 부족구간의 보강대책의 필요성이 제기되고 있다. 따라서 본 연구에서는 강섬유 혼입량 부족 대한 터널의 안정성 확보 및 문제점을 보완하기 위해 새로운 형태에 강섬유보강재를 개발하려고 한다.

탄소섬유강화 유리복합재료의 제조 및 특성분석 (Fabrication and Characterization of Carbon Fiber Reinforced)

  • 조해석;김상덕;조호진;공선식;최원봉;백용기;김형준;김환
    • 한국세라믹학회지
    • /
    • 제29권8호
    • /
    • pp.601-608
    • /
    • 1992
  • We investigated the influence of several processes, including the preparation of slurry and preform and the heat-treatment of the preform, on the properties of composites to fabricate the carbon-fiber reinforced glass composites having good mechanical properties. Cerander was determined to be the best binder among Cerander, Rhoplex and Elvacite 2045 by the dipping test and the binder within a preform could be completely eliminatd by burning out the specimen under 10-6 Torr at 400$^{\circ}C$ for more than 1h. The fracture behavior of a composite was largely dependent on the uniformity of carbon-fiber distribution within the composite and the heat-treatment condition of the composite. The higher the glass content, the more difficult to obtain uniform distribution of carbon-fiber. As the hot-pressing temperature increased, the densification process of the composite and the formation of pore due to oxidation of carbon fiber occurred competitively. But, above 1000$^{\circ}C$ the latter played a predominant role. We could fabricated the densest 15 vol.% carbon-fiber-content glass composite having the highest toughness and flexural strength of 250 MPa by hot-pressing under 15 MPa at 900$^{\circ}C$ for 30 min.

  • PDF

$Y_3Al_5O_{12}$ 첨가가 질화규소 세라믹스의 제조 및 그 기계적 특성에 미치는 영향 (The Effects of $Y_3Al_5O_{12}$ on the Mechanical Properties of Silicon Nitride)

  • 노상훈;문창권;정해용;서원찬;윤한기;김부안
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.95-100
    • /
    • 2007
  • In the present work, silicon nitride was fabricated with $Y_3Al_5O_{12}$ as a sintering additive and its mechanical properties were investigated. Silicon nitride with 3, 5, and 7wt% of $Y_3Al_5O_{12}$ was prepared and sintered by a Hot Pressing (HP) technique at 1750 and $1800^{\circ}C$ for 2 h. The process was performed under different process pressures of 30 and 45 MPa. Mechanical properties (density, strength, hardness, and fracture toughness) were investigated as a function of the $Y_3Al_5O_{12}$ content in $Si_3N_4$. $Si_3N_4\;-Y_3Al_5O_{12}$ ceramics showing similar mechanical properties compared with $Si_3N_4-Y_2O_3-Al_2O_3$ ceramics. But its high temperature strength was considerably higher than that of $Si_3N_4-Y_2O_3-Al_2O_3$ ceramics.

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin

  • Lee, Gi-Bbeum;Kim, Haeran;Shin, Wonjae;Jeon, Jinseok;Park, In-Seok;Nah, Changwoon
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.179-186
    • /
    • 2021
  • Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.