• 제목/요약/키워드: Flexible structure

검색결과 1,634건 처리시간 0.03초

유연전극 구조를 가진 플라즈마 발생장치를 이용한 미생물 살균 효과 연구 (A Study on the Effect of Microbial Sterilization Using Plasma Generator with a Flexible Electrodes Structure)

  • 이혁재;송현제;송민종
    • 한국전기전자재료학회논문지
    • /
    • 제33권1호
    • /
    • pp.70-77
    • /
    • 2020
  • In this study, the sterilization property of E. coli was established using a plasma generator with a flexible electrode structure. The bacterial suspension was prepared based on the McFarland standard 0.50 (1.5×108 CFU/mL) concentration and a specific amount was inoculated on the plate medium. After the plasma was discharged 3 cm away from the plasma generator in the range of 30s to 5 min and the results compared to the control group, the observed colonies that were formed decreased significantly as the plasma discharge time increased.

유연 구조물에서 반력 최소화를 위한 피이드백 기술 (Feedback Techniques for Minimizing Reaction Forces in Flexible Structures)

  • 김주형;김상섭
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.79-86
    • /
    • 2001
  • A method for actively minimizing dynamic reaction forces in a flexible structure subject to persistent excitations is presented. One difficulty with the method, however, is that forces and moments do not converge as quickly as displacements in mathematical discretization of continuous systems, so a controller based on a truncated model of a continuous system can produce poor results. A technique using residual flexibility matrix is presented for correcting the truncated force representation. A controller designed for reaction force minimization, using the residual flexibility matrix, is applied to a model of a flexible structure, and the results are presented. Implications of various reaction force penalty combinations on the resulting control performance are also discussed.

  • PDF

유연우주비행체의 선회 및 진동억제를 위한 Torque Shaping 기법에 관한 연구 (A study on torque shaping method for slewing and vibration suppression of flexible structures)

  • 문종윤;석진영;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1087-1090
    • /
    • 1996
  • The objective of this paper is to present a new input torque shaping method for slewing and vibration suppression of flexible structure based on Fourier series expansion. Vibration energy of the structure with shaped control input is investigated with respect to the shaping parameter of the reference torque, maneuver time and the number of trigonometric functions to be included in the series. Analytic expressions of the performance indices and their derivatives are derived in the modal coordinates. Numerical results show the effectiveness of the proposed approach to design the open-loop control law that modifies the shape of input torque for simultaneous slewing and vibration suppression.

  • PDF

과전류에 의해 열화된 비닐코드의 특성 분석 (The characteristics analyses of deteriorated PVC insulated flexible cords by over-current)

  • 김향곤;최충석;김동욱;정현상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.489-492
    • /
    • 2003
  • In this paper, we experimented on the deterioration process of power supply cords and analyzed the heating temperature of each part of those cords. We also analyzed the surface states, metallurgical structures surface structures and compositions of the wire melted by over-current. In the results of the analyses, the covering began to be deteriorated from the inside. The heating temperature of extension cord was higher than that of plug body. The dendrite structures appeared at the melted wire. By the SEM and EDS analyses, the dendrite structure showed the growth of copper oxide. We found out the characteristics of PVC insulated flexible cords by over-current from the above experiments and analyses. These results may be useful data in the analyses of deterioration causes of power supply cords.

  • PDF

공작기계의 유연 다물체 동역학 및 제어기 연계해석 (Coupled Flexible Multi-Body Dynamics and Controller Analysis of Machine Tool)

  • 김동만;김동현;박강균;최현철
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.307-312
    • /
    • 2010
  • In this study, advanced computational technique for mechatronic analysis has been developed for the efficient design and test of typical machine tool models. Flexible multi-body dynamic (FMBD) analysis method combined with motion controller including control logics is used to simulate typical operation conditions. The present FMBD machine tool model is composed of flexible column structure, rigid body spindle, vertical motion guide (arm) and screw elements. Driving motor clement with rotating degree-of-freedom is interconnected and governed by the designed Matlab Simulink control logic, and then the position of the spindle is feedback into the control logic. It is practically shown from the results that the investigation of designed machine tools with controller can be effectively conducted and verified.

직교이방성 복합소재 프로펠러 수치해석 (Numerical Analysis of Orthotropic Composite Propellers)

  • 김지혜;안병권;유원선
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.377-386
    • /
    • 2019
  • Flexible composite propellers have a relatively large deformation under heavy loading conditions. Thus, it is necessary to accurately predict the deformation of the blade through a fluid-structure interaction analysis. In this work, we present an LST-FEM method to predict the deformation of a flexible composite propeller. Here, we adopt an FEM solver called OOFEM to carry out a structural analysis with an orthotropic linear elastic composite material. In addition, we examine the influence of the lamination direction on the deformation of the flexible composite propeller.

유연식 라이저에 대한 유한요소법과 이론적 방법에 의한 구조 거동의 비교 연구 (A Comparison Study of Structure Behavior of Flexible Riser Using Numerical and Theoretical Methods)

  • 임기호;장범선;유동현
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.258-265
    • /
    • 2016
  • A flexible riser consists of several layers which have different materials, shapes and functions. The layers designed properly can take the design load safely, and each property of layer provides a complexity of flexible riser. Such complexity/unit-property is an input for global analysis of flexible riser. There are several approaches to calculate the complexity of flexible riser, those are experimental, numerical and theoretical methods. This paper provides a complexity from numerical and theoretical analysis for 2.5 inch flexible riser of which details and the experimental data are already produced under tension, external pressure, and bending moment. In addition, comparison of stiffness and stress are also provided. Especially, analysis of stress could lead to researches on ultimate strength or fatigue strength of flexible risers.

Development of a Tactile Sensor Array with Flexible Structure Using Piezoelectric Film

  • Yu, Kee-Ho;Kwon, Tae-Gyu;Yun, Myung-Jong;Lee, Seong-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1222-1228
    • /
    • 2002
  • This research is the development of a flexible tactile sensor array for service robots using PVDF (polyvinylidene fluoride) film for the detection of a contact state in real time. The prototype of the tactile sensor which has 8${\times}$8 array using PVDF film was fabricated. In the fabrication procedure, the electrode patterns and the common electrode of the thin conductive tape were attached to both sides of the 281$\mu\textrm{m}$ thickness PVDF film using conductive adhesive. The sensor was covered with polyester film for insulation and attached to the rubber base for a stable structure. The proposed fabrication method is simple and easy to make the sensor. The sensor has the advantages in the implementing for practical applications because its structure is flexible and the shape of the each tactile element can be designed arbitrarily. The signals of a contact force to the tactile sensor were sensed and processed in the DSP system in which the signals are digitized and filtered. Finally, the signals were integrated for taking the force profile. The processed signals of the output of the sensor were visualized in a personal computer, and the shape and force distribution of the contact object were obtained. The reasonable performance for the detection of the contact state was verified through the sensing examples.

Dynamic Analysis of a Moving Vehicle on Flexible Beam structures ( I ) : General Approach

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.54-63
    • /
    • 2002
  • In recent years, mechanical systems such as high speed vehicles and railway trains moving on elastic beam structures have become a very important issue to consider. In this paper, a general approach, which can predict the dynamic behavior of a constrained mechanical system moving on a flexible beam structure, is proposed. Various supporting conditions for the foundation support are considered for the elastic beam structure. The elastic structure is assumed to be a non-uniform and linear Bernoulli-Euler beam with a proportional damping effect. Combined differential-algebraic equation of motion is derived using the multi-body dynamics theory and the finite element method. The proposed equations of motion can be solved numerically using the generalized coordinate partitioning method and predictor-corrector algorithm, which is an implicit multi-step integration method.

Hybrid-type stretchable interconnects with double-layered liquid metal-on-polyimide serpentine structure

  • Yim, Doo Ri;Park, Chan Woo
    • ETRI Journal
    • /
    • 제44권1호
    • /
    • pp.147-154
    • /
    • 2022
  • We demonstrate a new double-layer structure for stretchable interconnects, where the top surface of a serpentine polyimide support is coated with a thin eutectic gallium-indium liquid metal layer. Because the liquid metal layer is constantly fixed on the solid serpentine body in this liquid-on-solid structure, the overall stretching is accomplished by widening the solid frame itself, with little variation in the total length and cross-sectional area of the current path. Therefore, we can achieve both invariant resistance and infinite fatigue life by combining the stretchable configuration of the underlying body with the freely deformable nature of the top liquid conductor. Further, we fabricated various types of double-layer interconnects as narrow as 10 ㎛ using the roll-painting and lift-off patterning technique based on conventional photolithography and quantitatively validated their beneficial properties. The new interconnecting structure is expected to be widely used in applications requiring high-performance and high-density stretchable circuits owing to its superior reliability and capability to be monolithically integrated with thin-film devices.