Browse > Article
http://dx.doi.org/10.26748/KSOE.2019.006

Numerical Analysis of Orthotropic Composite Propellers  

Kim, Ji-Hye (Department of Naval Architecture and Ocean Engineering, Chungnam National University)
Ahn, Byoung-Kwon (Department of Naval Architecture and Ocean Engineering, Chungnam National University)
Ruy, Won-Sun (Department of Naval Architecture and Ocean Engineering, Chungnam National University)
Publication Information
Journal of Ocean Engineering and Technology / v.33, no.5, 2019 , pp. 377-386 More about this Journal
Abstract
Flexible composite propellers have a relatively large deformation under heavy loading conditions. Thus, it is necessary to accurately predict the deformation of the blade through a fluid-structure interaction analysis. In this work, we present an LST-FEM method to predict the deformation of a flexible composite propeller. Here, we adopt an FEM solver called OOFEM to carry out a structural analysis with an orthotropic linear elastic composite material. In addition, we examine the influence of the lamination direction on the deformation of the flexible composite propeller.
Keywords
Composite propeller; Carbon fiber reinforced plastic; Fluid-structure interaction analysis; Lifting surface theory;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hong, Y., Wilson, P.A., He, X.D., Wang, R.G., 2017. Numerical Analysis and Performance Comparison of the Same Series of Composite Propellers. Ocean Engineering, 144(1), 211-223. https://doi.org/10.1016/j.oceaneng.2017.08.036   DOI
2 Jang, H.G., Nho, I.S., Hong, C.H., Lee, C.S., 2012. Design Algorithms of Flexible Propeller by Fluid-Structure Interactive Analysis. Journal of the Society of Naval Architects of Korea, 49(6), 528-533. https://doi.org/10.3744/SNAK.2012.49.6.528   DOI
3 Kim, J.H., Ahn, B.K., Kim, G.D., Lee, C.S., 2018. Numerical Prediction of Hydroelastic Performance of the Flexible Composite Propeller. Proceedings of the 28th International Ocean and Polar Engineering Conference, Sapporo Japan.
4 Lee, H., Song, M.C., Han, S., Chang, B.J., Suh, J.C., 2017. Hydro-elastic Aspects of a Composite Marine Propeller in Accordance with Ply Lamination Methods. Journal of Marine Science and Technology, 22(3), 479-493. https://doi.org/10.1007/s00773-016-0428-4   DOI
5 Lin, G.F., 1991. Comparative Stress/Deflection Analysis of a Thick-Shell Composite Propeller Blade. David Taylor Research Center Technical Report, DTRC/SHD-1373-01.
6 Lin, H.J., Lin, J.J., 1996. Nonlinear Hydroelastic Behavior of Propellers Using a Finite Element Method and Lifting Surface Theory. Journal of Marine Science and Technology, 1(2), 114-124. https://doi.org/10.1007/BF02391167   DOI
7 Lin, H.J., Lin, J.J., Chuang, T.J., 2005. Strength Evaluation of a Composite Marine Propeller Blade. Journal of Reinforced Plastics and Composites, 24(17), 1791-1807. https://doi.org/10.1177/0731684405052199.   DOI
8 Motley, M.R., Liu, Z., Young, Y.L., 2009. Utilizing Fluid-structure Interactions to Improve Energy Efficiency of Composite Marine Propellers in Spatially Varying Wake. Composite Structures, 90(3), 304-313. https://doi.org/10.1016/j.compstruct.2009.03.011.   DOI
9 Mouritz, A.P., Gellert, E., Burchill, P., Challis, K., 2001. Review of Advanced Composite Structures for Naval Ships and Submarines. Composite Structure, 53(1), 21-41. https://doi.org/10.1016/S0263-8223(00)00175-6   DOI
10 Motley, M.R., Kramer, M.R., Young, Y.L., 2013. Free Surface and Solid Boundary Effects on the Free Vibration of Cantilevered Composite Plates. Composite Structures, 96, 365-375. https://doi.org/10.1016/j.compstruct.2012.09.023   DOI
11 Nho, I.S., Lee, J.Y., Lee, H.Y., Lee, C.S., 2004. A Dynamic Structural Analysis System for Propeller Blades. Journal of the Society of Naval Architects of Korea, 41(2), 114-120.   DOI
12 Pagano, N., 1969. Exact Solution for Composite Laminates in Cylindrical Bending. Journal of Composite Materials, 3(3), 398-411.   DOI
13 Patzak, B., 2012. OOFEM - An Object-oriented Simulation Tool for Advanced Modeling of Materials and Structures. Acta Polytechnica, 52(6), 59-66.   DOI
14 Tenek, L.T., Argyris, J., 1998. Finite Element Analysis for Composite Structure. Kluwer Academic Publishers.
15 Hong, Y., He, X.D., Wang, R.G., 2012. Vibration and Damping Analysis of a Composite Blade. Materials and Design, 34, 98-105. https://doi.org/10.1016/j.matdes.2011.07.033   DOI
16 Young, Y.L., 2008. Fluid-structure Interaction Analysis of Flexible Composite Marine Propellers. Journal of Fluids and Structures, 24(6), 799-818. https://doi.org/10.1016/j.jfluidstructs.2007.12.010.   DOI
17 Motley, M.R., Young, Y.L., 2011. Performance-based Design and Analysis of Flexible Composite Propulsors. Journal of Fluids and Structures, 27, 1310-1325. https://doi.org/10.1016/j.jfluidstructs.2011.08.004   DOI
18 Camanho, P., Lambert, M.A., 2006. A Design Methodology for Mechanically Fastened Joints in Laminated Composite Materials. Composites Science Tehcnology, 66(15), 3004-3020. https://doi.org/10.1016/j.compscitech.2006.02.017   DOI
19 Chen, B., Neely, S., Michael, T., Gowing S., Szwerc, R., Buchler, D., Schult, R., 2006. Design, Fabrication and Testing of Pitch-Adapting(Flexible) Composite Propellers. Proceedings of the SNAME Propeller/Shafting Symposium, Williamsburg VA USA.