• Title/Summary/Keyword: Flexible multibody dynamic model

Search Result 48, Processing Time 0.024 seconds

Experimental Verification of Flexible Multibody Dynamic Simulations for A Rotating Beam (회전 외팔보에 대한 유연 다물체 동역학 시뮬레이션의 실험적 검증)

  • Kim, Seong-Su;Gang, Yeon-Jun;Lee, Gyu-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.267-274
    • /
    • 2002
  • Using a flexible rotating beam test bed, experimental verification of a flexible multibody dynamic simulations for a rotating beam model has been carried out. The test bed consists of a flexible arm, harmonic driver reducer, AC servo motor and DSP board with PC. The mechanical ports of the test bed has been designed using 3D CAD program. For the simulation model, mass and moment of inertia of each part of the flexible rotating beam test bed are also obtained from 3D CAD model. In the flexible multibody dynamic simulations, the substructuring model has been established to capture nonlinear effects of the flexible rotating beam. Through the experimental verification, substructuring model provides better results than those from the linear model in the high speed rotation.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Durability Performance Evaluation of an Aluminum Knuckle using Virtual Testing Method (가상시험법을 이용한 알루미늄 너클의 내구수명 평가)

  • Ko, Han-Young;Choi, Gyoo-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • Durability performance evaluation technology using Virtual Testing Method is a new concept of a vehicle design, which can reduce the automotive components design period and cost. In this paper, the fatigue life of an aluminum knuckle of a passenger car is evaluated using virtual testing method. The flexible multibody dynamic model of a front half car module is generated and solved with service loads which are measured from Belgian roads. Using a multibody dynamic analysis software, the flexible multibody dynamic simulation of a half car model is carried out and the dynamic stress profile of an aluminum knuckle is acquired. The stress profile is exported to a fatigue analysis software and durability performance of an aluminum knuckle is evaluated.

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

Flexible Multibody Dynamic Model of a Maglev Vehicle Bogie (자기부상열차 대차 유연 다물체 모델)

  • Kim, Ki-Jung;Han, Hyung-Suk;Lee, Nam-Jin;Kim, Bong-Sub
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1207-1212
    • /
    • 2009
  • The flexible multibody dynamic model of an EMS-type Maglev vehicle is necessary in design stage to predict its behavior, load history and levitation performance. Especially in EMS-type Maglev vehicle, the body flexibility of its bogie with electromagnets affects the levitation performance because its feedback control system is more sensitive to vibration of bogie structure. The flexible multibody dynamic model of a 1/2 Maglev vehicle under test is presented. The basic modeling procedure is almost the same as in other applications. However, the feedback control system model unique in EMS-type maglev vehicle must be included in the model. With the model proposed in this study, the dynamic behavior, load history and levitation performance are more precisely predicted. This model could realize the virtual prototyping in EMS-type Maglev vehicle area.

  • PDF

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식;김창부
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.882-889
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using the flexible multibody dynamic analysis and the finite element one. This method is executed in 3 steps. In the 1st step, time dependent quantities such as dynamic loads, modal coordinates and gross body motion of the flexible body are calculated through a flexible multibody dynamic analysis. And frequency response functions of those time dependent quantities are computed through Fourier transforms. In the 2nd step, acoustic pressure coefficients are obtained through structure-acoustic coupling analyses by the finite element method. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

Simulation Analysis on Flexible Multibody Dynamics of Drum Brake System of a Vehicle

  • Liu, Yi;Hu, Wen-Zhuan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.125-130
    • /
    • 2015
  • Using flexible multibody system dynamic method, the rigid-flexible coupling multibody dynamic analysis model of the drum brake system was developed, and the kinematic and dynamic simulation of the system was processed as its object of study. Simulations show that the friction will increase with the dynamic friction coefficient, but high dynamic friction coefficient will cause the abnormal vibration and worsen the stability of the brake system, even the stability of the whole automobile. The modeling of flexible multi-body can effectively analyze and solve complex three-dimensional dynamic subjects of brake system and evaluate brake capability. Further research and study on this basis will result in a convenient and effective solution that can be much helpful to study, design and development of the brake system.

Study of of Flexible Multibody Dynamics with Rotary Inertia (회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구)

  • 김성수
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.