• 제목/요약/키워드: Flexible method

검색결과 2,795건 처리시간 0.025초

축-이중 원판계의 진동해석 (Vibration Analysis of the Shaft-duplicate Disk System)

  • 전상복;이종원
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.896-906
    • /
    • 1997
  • The effect of duplicate flexible disks on the vibrational modes of a flexible rotor system is investigated by using an anlytical method based on the assumed modes method. The rotor model to be analyzed consists of duplicate disks on a flexible shaft. In modeling the system, centrifugal stiffening and disk flexibility effects are taken into account. To demonstrate the effectiveness of the method, a hard disk drive spindle system commonly used in personal computers and a simple flexible rotor system with two disks are selected as examples. In particular, the dynamic coupling between the vibrational modes of the shaft and the duplicate disks is investigated with the shaft rotational speed varied.

다물체계내 유연체의 구조기인 소음해석 (Structure Borne Noise Analysis of a Flexible Body in Multibody System)

  • 김효식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

가변금형을 이용한 판재 성형에 대한 해석 및 실험 (Numerical and Experimental Study on Plate Forming Process using Flexible Die)

  • 허성찬;서영호;박중원;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.570-578
    • /
    • 2008
  • A flexible forming apparatus is composed a number of punches which have spherical pin tip shape instead of conventional solid die. The flexible forming tool consisted of punch array in a matrix form was proposed as an alternative forming method to substitute the conventional line heating method which use heat source to induce residual stress along specified heating lines. In this study, application of the flexible forming process to the small scale curved plate forming was conducted. Numerical simulations for both solid and flexible die forming process were carried out to compare the shape of the products between flexible and conventional die forming process. In addition, spring-back analysis was conducted to figure out the feasibility of the flexible forming process comparing with the die forming process in view of final configuration of the specimens. Moreover, experiment was also carried out to confirm the formability of the process. Consequently, it was confirmed that the flexible die forming method has capability and feasibility to manufacture the curved plates for shipbuilding.

구속받는 3차원 유연 매니퓨레이터의 진동억제 제어 (Vibration Suppression Control of Constrained Spatial Flexible Manipulators)

  • 김진수;우찌야마마사루
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.189-195
    • /
    • 2000
  • For free motions, vibration suppression of flexible manipulators has been one of the hottest research topics. However, for constrained motions, a little effort has been devoted for vibration suppression control. Using the dependency of elastic deflections of links on contact force under static conditions, vibrations for constrained planar two-link flexible manipulators have been suppressed successfully by controlling the contact force. However, for constrained spatial multi-link flexible manipulators, the vibrations cannot be suppressed by only controlling the contact force. So, the aim of this paper is to clarify the vibration mechanism of a constrained, multi-DOF, flexible manipulator and to devise the suppression method. We apply a concise hybrid position/force control scheme to control a flexible manipulator modeled by lumped-parameter modeling method. Finally, a comparison between simulation and experimental results is presented to show the performance of our method.

  • PDF

프린팅 방법을 통한 Micro-Nano 시스템을 위한 all polymer flexible cuircuit 개발 (Development of all-polymer flexible circuit for micro-nano system using printing method)

  • 이정훈;황교일;신창용;류경주;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.750-753
    • /
    • 2002
  • At present, almost circuits are wired using copper in flexible circuits. But, these circuit have limit to flexibility so it occurs fracture about cyclic bending and, thermal load of bending stress occur a circuit trouble. a study of all-polymer flexible circuits get over that problem. Established fabrication method of all-polymer circuits is photolithograph. This method can not have mass production, so this method wastes time and human effort. In this study, all polymer flexible circuits are fabricated using the inkjet process.

  • PDF

가변성형공정에서 성형성 향상을 위한 해석 및 실험적 연구 (Numerical and Experimental Study for Improvement of Formability in Flexible Forming Process)

  • 허성찬;서영호;강범수;김정
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.432-440
    • /
    • 2012
  • In this article, the design of the flexible forming process considering die shape compensation using an iterative over-bending method based on numerical simulation was conducted. In this method, the springback shape obtained from the final step of the first forming simulation is compared with the desired objective shape, and a shape error is calculated as a vector norm with three-dimensional coordinates. The error vector is inversely added to the objective surface to compensate both the upper and lower flexible die configurations. The flexible die shapes are recalculated and the punch arrays are adjusted according to the over-bent forming surface. These iterative procedures are repeated until the shape error variation converges to a small value. In addition, experimental verification was conducted using a 2000-kN flexible forming apparatus for thick plates. Finally, the configuration of the prototype obtained from the experiment was compared with the numerical simulation results, which had springback compensation. It is confirmed that the proposed method for compensating for the forming error could be used in the design of flexible forming of thick-curved plates.

탄성 시스템에서의 효율적인 좌표분할법 선정에 관한 연구 (Selection of efficient coordinate partitioning methods in flexible multibody systems)

  • 김외조;유완석
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1311-1321
    • /
    • 1997
  • In multibody dynamics, differential and algebraic equations which can satisfy both equation of motion and kinematic constraint equation should be solved. To solve these equations, coordinate partitioning method and constraint stabilization method are commonly used. In the coordinate partitioning method, the coordinates are divided into independent and dependent and coordinates. The most typical coordinate partitioning method are LU decomposition, QR decomposition, and SVD (singular value decomposition). The objective of this research is to find an efficient coordinate partitioning method in the dynamic analysis of flexible multibody systems. Comparing two coordinate partitioning methods, i.e. LU and QR decomposition in the flexible multibody systems, a new hybrid coordinate partitioning method is suggested for the flexible multibody analysis.

다관절 유연 로보트 팔의 역동력학 해석 (Inverse dynamic analysis of flexible robot arms with multiple joints)

  • 김창부;이승훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.254-259
    • /
    • 1992
  • In this paper, we propose an optimal method for the tracking a trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint equations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation of flexible planner manipulator is presented.

  • PDF

다물체계내 유연체의 구조기인 소음해석 (Structure Borne Noise Analysis of a Flexible Body in Multibody System)

  • 김효식;김창부
    • 한국소음진동공학회논문집
    • /
    • 제13권11호
    • /
    • pp.882-889
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using the flexible multibody dynamic analysis and the finite element one. This method is executed in 3 steps. In the 1st step, time dependent quantities such as dynamic loads, modal coordinates and gross body motion of the flexible body are calculated through a flexible multibody dynamic analysis. And frequency response functions of those time dependent quantities are computed through Fourier transforms. In the 2nd step, acoustic pressure coefficients are obtained through structure-acoustic coupling analyses by the finite element method. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

유연마니퓨레이터의 궤도최적화 (Trajectory Optimization of Flexible Manipulators)

  • 이승재;최연선;야마카와히로시
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.979-983
    • /
    • 2001
  • We develop a new method of simultaneous optimization of trajectory and shape of redundant flexible manipulators for collision-free utilizing the B-spline function and a mathematical programming method We adopt an approximate flexible manipulator model which consists of rigid bar elements and spring elements. We use B-spline function for determining the approximate trajectory and the expressions of the outline of obstacles. The used total performance index consists of 2 performance indices. The first is the driving energy, and the second is the trajectory deviation which is caused by the approximate modeling for the flexible manipulator. We design optimal collision-free trajectory of flexible manipulators by searching optimum positions of the control points for B-spline approximation which minimize the performance index subject to constraint condition for collision-free. Some examinations through numerical examples show the effectiveness of the method

  • PDF