• Title/Summary/Keyword: Flexible dynamics

Search Result 407, Processing Time 0.021 seconds

Transient response analysis of tapered FRP poles with flexible joints by an efficient one-dimensional FE model

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.243-259
    • /
    • 2016
  • This research develops a finite element code for the transient dynamic analysis of tapered fiber reinforced polymer (FRP) poles with hollow circular cross-section and flexible joints used in power transmission lines. The FRP poles are modeled by tapered beam elements and their flexible joints by a rotational spring. To solve the time equations of transient dynamic analysis, precise time integration method is utilized. In order to verify the utilized formulations, a typical jointed FRP pole under step, triangular and sine pulses is analyzed by the developed finite element code and also ANSYS commercial finite element software for comparison. Thereafter, the effect of joint flexibility on its dynamic behavior is investigated. It is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection history decreases, and the time of occurrence of the maximum deflection is earlier.

Motion analysis of a Translating Flexible Beam Carrying a Moving Mass (이동부하를 가지고 병진운동하는 유연보의 운동 해석)

  • Park, Sang-Deok;Chung, Wan-Kyun;Youm, Young-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.204-212
    • /
    • 1999
  • In this paper, the vibrational motion of a flexible beam clamped on a translating base and carrying a moving mass is investigated. The equations of motion which describe the total dynamics of the beam-mass-cart system are derived and the coupled dynamic equations are solved by unconstrained modal analysis. In modal analysis, the exact normal mode solutions corresponding to the eigenfrequencies for the position of the moving mass and the ratios of the mass of the flexible beam, the moving mass and the base cart are used. Proper transformations of the time solutions between the normal modes for a position and those for the next position of the moving mass are also adopted. Numerical simulations are carried out to obtain the open-loop responses of the system in tracking the pre-designed path of the moving mass.

  • PDF

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

The Dynamics Analysis for Nonlinear Flexible Mechanisms using Finite Elements and Algebraic Quaternions (유한요소와 4원법을 이용한 비선형 유연체동역학의 해석기법)

  • 이동현;윤성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.9-16
    • /
    • 2004
  • This paper deals with the development of computational schemes for the dynamic analysis of flexible and nonlinear multibody systems. Different from the existing method, this paper introduces the quaternion algebra to develop the equation of the conservation of energy. Simultaneously, Rodrigues parameters are used to express the finite rotation for the proposed scheme. The proposed energy scheme is derived such that it provides unconditionally stable conditions for the nonlinear problems. Several examples of dynamic systems are presented which illustrate the efficiency and accuracy of the developed energy schemes.

  • PDF

Dynamic Analysis of a Flexible Windshield Wiper Mechanism (탄성 앞창닦기 기구의 동력학적 해석)

  • 유완석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.450-455
    • /
    • 1986
  • 본 연구에서는 직교좌표계 및 Euler-Lagrange 방법을 이용하여 유도된 기본 방정식을 사용하여 앞창닦기기구(windshield wiper mechanism)의 동력학적 해석을 하 였다.모우터가 일정한 각속도로 회전하고 있는 경우와, 토오크가 각속도의 크기에 따라 변화하는 경우 각각에 대해서 강체로 해석할 때와 탄성체로 가정할 때의 해석결 과를 비교하였다.

Dynamic modeling issues for contact tasks of flexible robotic manipulators

  • 최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.175-180
    • /
    • 1993
  • The nonlinear integro-differential equations of motion of a two-link structurally flexible planar manipulator executing contact tasks are presented. The equations of motion are derived using the extended Hamilton's principle and the Galerkin criterion. Also, Models for the wrist-force sensor and impact that occurs when the manipulator's end point makes contact withthe environment are presented. The dynamic models presented can be used to studythe dynamics of the system and to design controllers.

Flight Dynamic Simulation Program for Analyzing Static and Dynamic Behaviors of Aircraft with Flexible Characteristics (유연 특성 항공기의 동적·정적 거동 분석을 위한 비행 동역학 시뮬레이션 프로그램)

  • Jin, Jaehyun;Paek, Seung-Kil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Modern aircraft are high-performance and lightweight. Thus, the characteristics of the flexible structure appear and affect flight performance or limit it. These flexible characteristics need to be analyzed from the early stages of aircraft design. To this end, a program to analyze the dynamic and static behavior of flexible aircraft has been developed and the results are presented. Based on the multi-body dynamics simulation technique, rigid flight mechanics, structural vibrating behavior, and unsteady aerodynamics have been developed and integrated. Lastly, the level flight and the turn flight of the flexible characteristic aircraft have been analyzed using this integrated simulation program.

Position estimation using combined vision and acceleration measurement

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.187-192
    • /
    • 1992
  • There are several potential error sources that can affect the estimation of the position of an object using combined vision and acceleration measurements. Two of the major sources, accelerometer dynamics and random noise in both sensor outputs, are considered. Using a second-order model, the errors introduced by the accelerometer dynamics are reduced by the smaller value of damping ratio and larger value of natural frequency. A Kalman filter approach was developed to minimize the influence of random errors on the position estimate. Experimental results for the end-point movement of a flexible beam confirmed the efficacy of the Kalman filter algorithm.

  • PDF

Rotor Dynamics Analysis of a Spindle System for a High speed Grinding Machine (고속 연삭기 주축 시스템의 회전체 역학 해석)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • This paper describes a transfer matrix approach to analyze the dynamics of a high sped flexible rotor system supported at 2 positions by five ceramic bearings. The rotor system is modelled as lumped parameters in which many factors are considered not only lumped inertia or mass, bending moment, shear force but also gyroscopic effect and unbalance. The equation of motion is derived in the transfer matrix form, from which the eigenvalues equation is also derived. The transfer natural frequencies and modes. The eigenvalues, eigenmodes, campbell diagram, whirling critical speed, whirling modes, and the response of unbalance are calculated and discussed.

  • PDF

Rotordynamics of a Centrifuge Rotor-Bearing System for 100,000 rpm Operation (100,000 rpm 운전용 원심분리기 로터-베어링 시스템의 회전체동역학 해석)

  • 이안성;김영철;박종권
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.450-456
    • /
    • 1998
  • A rotordynamic analysis is performed with a centrifuge rotor-bearing system for the raing speed of 100,000 rpm. The system is composed of a centrifuge rotor(or simply the rotor), flexible shaft, motor rotor and shaft, and two support rolling element bearings of the motor shaft. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor at the associated critical speeds. The latter requirements are especially important as the system crosses multiple numbers of critical speeds and as the system may not have enough separaton margins around the rating speed. As the system adopts an extra-flexible shaft, it is shown that the rotor has satisfactory small unbalance responses over higher criticals while having an unsatisfactory large one at the first critical. To supress this a bumper ring or guide bearing needs to be installed at a suitable location of the flexible shaft. It is also shown that even with the flexible shaft the dynamics of the motor must be incoporated into the full system model to accurately identify the fourth critical speed, which is close to the rating speed, and higher ones. The analysis is based on the finite element method.

  • PDF