• 제목/요약/키워드: Flexible TFTs

검색결과 92건 처리시간 0.029초

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF

Wide-QQVGA Flexible Full-Color Active-Matrix OLED Display with an Organic TFT Backplane

  • Nakajima, Yoshiki;Takei, Tatsuya;Tsuzuki, Toshimitsu;Suzuki, Mitsunori;Fukagawa, Hirohiko;Fujisaki, Yoshihide;Yamamoto, Toshihiro;Kikuchi, Hiroshi;Tokito, Shizuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.189-192
    • /
    • 2008
  • A 5.8-inch wide-QQVGA flexible full-color active-matrix OLED display was fabricated on a plastic substrate. Low-voltage-operation organic TFTs and high-efficiency phosphorescent OLEDs were used as the backplane and emissive pixels, respectively. The fabricated display clearly showed color moving images when the driving voltage was below 15 V.

  • PDF

미세접촉프린팅 공정을 이용한 유연성 유기박막소자(OTFT)설계 및 제작 (Design and Fabrication of Flexible OTFTs by using Nanocantact Printing Process)

  • 조정대;김광영;이응숙;최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.506-508
    • /
    • 2005
  • In general, organic TFTs are comprised of four components: gate electrode, gate dielectric, organic active semiconductor layer, and source and drain contacts. The TFT current, in turn, is typically determined by channel length and width, carrier field effect mobility, gate dielectric thickness and permittivity, contact resistance, and biasing conditions. More recently, a number of techniques and processes have been introduced to the fabrication of OTFT circuits and displays that aim specifically at reduced fabrication cost. These include microcontact printing for the patterning of metals and dielectrics, the use of photochemically patterned insulating and conducting films, and inkjet printing for the selective deposition of contacts and interconnect pattern. In the fabrication of organic TFTs, microcontact printing has been used to pattern gate electrodes, gate dielectrics, and source and drain contacts with sufficient yield to allow the fabrication of transistors. We were fabricated a pentacene OTFTs on flexible PEN film. Au/Cr was used for the gate electrode, parylene-c was deposited as the gate dielectric, and Au/Cr was chosen for the source and drain contacts; were all deposited by ion-beam sputtering and patterned by microcontact printing and lift-off process. Prior to the deposition of the organic active layer, the gate dielectric surface was treated with octadecyltrichlorosilane(OTS) from the vapor phase. To complete the device, pentacene was deposited by thermal evaporation and patterned using a parylene-c layer. The device was shown that the carrier field effect mobility, the threshold voltage, the subthreshold slope, and the on/off current ratio were improved.

  • PDF

Investigation of Low-Temperature Processed Amorphous ZnO TFTs Using a Sol-Gel Method

  • Chae, Seong Won;Yun, Ho Jin;Yang, Seung Dong;Jeong, Jun Kyo;Park, Jung Hyun;Kim, Yu Jeong;Kim, Hyo Jin;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권3호
    • /
    • pp.155-158
    • /
    • 2017
  • In this paper, ZnO Thin Film Transistors (TFTs) were fabricated by a sol-gel method using a low-temperature process, and their physical and electrical characteristics were analyzed. To lower the process temperature to $200^{\circ}C$, we used a zinc nitrate hydrate ($Zn(NO_3)_2{\cdot}xH_2O$) precursor. Thermo Gravimetric Analyzer (TGA) analysis showed that the zinc nitrate hydrate precursor solution had 1.5% residual organics, much less than the 6.5% of zinc acetate dihydrate at $200^{\circ}C$. In the sol-gel method, organic materials in the precursor disrupt formation of a high-quality film, and high-temperature annealing is needed to remove the organic residuals, which implies that, by using zinc nitrate hydrate, ZnO devices can be fabricated at a much lower temperature. Using an X-Ray Diffractometer (XRD) and an X-ray Photoelectron Spectrometer (XPS), $200^{\circ}C$ annealed ZnO film with zinc nitrate hydrate (ZnO (N)) was found to have an amorphous phase and much more oxygen vacancy ($V_o$) than Zn-O bonds. Despite no crystallinity, the ZnO (N) had conductance comparable to that of ZnO with zinc acetate dihydrate (ZnO (A)) annealed at $500^{\circ}C$ as in TFTs. These results show that sol-gel could be made a potent process for low-cost and flexible device applications by optimizing the precursors.

Flexible 디스플레이로의 응용을 위한 플라스틱 기판 위의 박막트랜지스터의 제조 (Fabrication of thin Film Transistor on Plastic Substrate for Application to Flexible Display)

  • 배성찬;오순택;최시영
    • 대한전자공학회논문지SD
    • /
    • 제40권7호
    • /
    • pp.481-485
    • /
    • 2003
  • 25㎛ 두께의 폴리이미드 박핀 기판을 glass 기판에 부착하여 최대 온도 150℃에서 비정질 실리콘 TFT를 제작하였다. 본 논문은 plastic 기판 위에 TFT가 제작되는 공정 절차를 요약하고 glass 위에 제작된 TFT와 ON/OFF 전달특성과 전계효과 이동도를 서로 비교해 보았다. a-SiN:H 코팅층은 plastic 기판의 표면 거칠기를 감소시키는 중요한 역할을 하여 TFT의 누설전류를 감소시키고 전계효과 이동도를 증가시켰다. 따라서 a-SiN:H 코팅층을 이용하여 plastic 기판에 양철의 TFT를 제작하였다.

Printed organic transistors for large-area electronics

  • Someya, Takao;Sakurai, Takayasu;Sekitani, Tsuyoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.205-208
    • /
    • 2006
  • We report the recent progress and future prospects of flexible, large-area sensors and actuator using organic thin-film transistors (TFTs). In particular, we describe printing technologies to manufacture electronic artificial skins (e-skins) for robots, sheet image scanners suitable for mobile applications, and Braille sheet display with plastic actuator arrays. We also present recent progress of reliability and stability issues.

  • PDF

Possibility of Si TFT Technology

  • Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.31-33
    • /
    • 2002
  • Si TFTs are applied not only to stacked SRAM but also to FPD. Improvement of device characteristic such as an enhancement of carrier mobility or a reduction of leakage current is studied intensively. The TFT technology is developing based on conventional Si LSI technology. By establishing a stable fabrication process on flexible substrate and high performance characteristic uniformly and reliably, TFT technology has a possibility to develop to SOP or other highly functional applications similar to or beyond the conventional Si LSI in the era of information and telecommunication.

  • PDF

Non volatile memory device using mobile proton in gate insulator by hydrogen neutral beam treatment

  • 윤장원;장진녕;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.192.1-192.1
    • /
    • 2015
  • We demonstrated the nonvolatile memory functionality of nano-crystalline silicon (nc-Si) and InGaZnOxide (IGZO) thin film transistors (TFTs) using mobile protons that are generated by very short time hydrogen neutral beam (H-NB) treatment in gate insulator (SiO2). The whole memory fabrication process kept under $50^{\circ}C$ (except SiO2 deposition process; $300^{\circ}C$). These devices exhibited reproducible hysteresis, reversible switching, and nonvolatile memory behaviors in comparison with those of the conventional FET devices. We also executed hydrogen treatment in order to figure out the difference of mobile proton generation between PECVD and H-NB CVD that we modified. Our study will further provide a vision of creating memory functionality and incorporating proton-based storage elements onto a probability of next generation flexible memorable electronics such as low power consumption flexible display panel.

  • PDF

Printed Polymer and a-Si TFT Backplanes for Flexible Displays

  • Street, R.A.;Wong, W.S.;Ready, S.E.;Chabinyc, M.L.;Arias, A.C.;Daniel, J.H.;Apte, R.B.;Salleo, A.;Lujan, R.;Ong, Beng;Wu, Yiliang
    • Journal of Information Display
    • /
    • 제6권3호
    • /
    • pp.12-17
    • /
    • 2005
  • The need for low cost, flexible, thin film transistor (TFT) display backplanes has focused attention on new processing techniques and materials. We report the development of TFT backplane technology based entirely on jet-printing, using a combination of additive and subtractive processing, to print active materials or etch masks. The technique eliminates the use of photolithography and has the potential to reduce the array manufacturing cost. The printing technique is demonstrated with both amorphous silicon and polymer semiconductor TFT arrays, and we show results of small prototype displays.

Roll-to-Roll Fabrication of Active-Matrix Backplanes Using Self-Aligned Imprint Lithography (SAIL)

  • Kim, Han-Jun;Almanza-Workman, Marcia;Chaiken, Alison;Jackson, Warren;Jeans, Albert;Kwon, Oh-Seung;Luo, Hao;Mei, Ping;Perlov, Craig;Taussig, Carl;Jeffrey, Frank;Braymen, Steve;Hauschildt, Jason
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1539-1543
    • /
    • 2006
  • We have developed self-aligned imprint lithography (SAIL) technology, an innovative method for roll-to-roll (R2R) fabrication of electronic devices on flexible plastic substrates. In this paper, we present the first R2R-produced ${\alpha}$-Si TFTs built on a polyimide substrate using the SAIL process, and prove the feasibility of this technology to enable R2R fabrication of flexible display active matrix (AM) backplanes with high precision and throughput.

  • PDF