• Title/Summary/Keyword: Fixed-point

Search Result 2,725, Processing Time 0.025 seconds

NOTE FOR THE TRIPLED AND QUADRUPLE FIXED POINTS OF THE MIXED MONOTONE MAPPINGS

  • Wu, Jun;Liu, Yicheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.993-1005
    • /
    • 2013
  • In this paper, to include more generalized cases, the authors present a modified concept for the tripled and quadruple fixed point of the mixed monotone mappings. Also, they investigate the existence and uniqueness of fixed point of the ordered monotone operator with the Matkowski contractive conditions in the partial ordered metric spaces. As the direct consequences, the existence of coupled fixed point, tripled fixed point and quadruple fixed point are explored at the common framework and some previous results in [T. G. Bhaskar and V. Lakshmikan-tham, Fixed point theory in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393; V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889-4897; E. Karapinar and N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Computers and Mathematics with Applications (2012), doi:10.1016/j.camwa.2012.02061] are improved. Finally, some fixed point theorems are proved.

COINCIDENCE POINT AND FIXED POINT THEOREMS IN PARTIAL METRIC SPACES FOR CONTRACTIVE TYPE MAPPINGS WITH APPLICATIONS

  • SALUJA, G.S.;KIM, JONG KYU;LIM, WON HEE
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1053-1071
    • /
    • 2022
  • The purpose of this article is to establish some fixed point theorems, a common fixed point theorem and a coincidence point theorem via contractive type condition in the framework of complete partial metric spaces and give some examples in support of our results. As an application to the results, we give some fixed point theorems for integral type contractive conditions. The results presented in this paper extend and generalize several results from the existing literature.

EXTENSIONS OF ORDERED FIXED POINT THEOREMS

  • Sehie Park
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.831-850
    • /
    • 2023
  • Our long-standing Metatheorem in Ordered Fixed Point Theory is applied to some well-known order theoretic fixed point theorems. In the first half of this article, we introduce extended versions of the Zermelo fixed point theorem, Zorn's lemma, and the Caristi fixed point theorem based on the Brøndsted-Jachymski principle and our 2023 Metatheorem. We show some of their applications to other fixed point theorems or theorems on the existence of maximal elements in partially ordered sets. In the second half, we collect and improve order theoretic fixed point theorems in the collection of Howard-Rubin in 1991 and others. In fact, we improve or extend several ordering principles or fixed point theorems due to Brézis-Browder, Brøndsted, Knaster-Tarski, Tarski-Kantorovitch, Turinici, Granas-Horvath, Jachymski, and others.

FIXED POINTS OF WEAKLY INWARD 1-SET-CONTRACTION MAPPINGS

  • Duan, Huagui;Xu, Shaoyuan;Li, Guozhen
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1725-1740
    • /
    • 2008
  • In this paper, we introduce a fixed point index of weakly inward 1-set-contraction mappings. With the aid of the new index, we obtain some new fixed point theorems, nonzero fixed point theorems and multiple positive fixed points for this class of mappings. As an application of nonzero fixed point theorems, we discuss an eigenvalue problem.

SOME FIXED POINT THEOREMS IN GENERALIZED DARBO FIXED POINT THEOREM AND THE EXISTENCE OF SOLUTIONS FOR SYSTEM OF INTEGRAL EQUATIONS

  • Arab, Reza
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.125-139
    • /
    • 2015
  • In this paper we introduce the notion of the generalized Darbo fixed point theorem and prove some fixed and coupled fixed point theorems in Banach space via the measure of non-compactness, which generalize the result of Aghajani et al. [6]. Our results generalize, extend, and unify several well-known comparable results in the literature. One of the applications of our main result is to prove the existence of solutions for the system of integral equations.

Fixed Point Theorems in Product Spaces

  • Bae, Jong Sook;Park, Myoung Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.6 no.1
    • /
    • pp.53-57
    • /
    • 1993
  • Let E and F be Banach spaces with $X{\subset}E$ and $Y{\subset}F$. Suppose that X is weakly compact, convex and has the fixed point property for a nonexpansive mapping, and Y has the fixed point property for a multivalued nonexpansive mapping. Then $(X{\oplus}Y)_p$, $1{\leq}$ P < ${\infty}$ has the fixed point property for a multi valued nonexpansive mapping. Furthermore, if X has the generic fixed point property for a nonexpansive mapping, then $(X{\oplus}Y)_{\infty}$ has the fixed point property for a multi valued nonexpansive mapping.

  • PDF

COMMON FIXED POINT RESULTS FOR NON-COMPATIBLE R-WEAKLY COMMUTING MAPPINGS IN PROBABILISTIC SEMIMETRIC SPACES USING CONTROL FUNCTIONS

  • Das, Krishnapada
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.629-643
    • /
    • 2019
  • In common fixed point problems in metric spaces several versions of weak commutativity have been considered. Mappings which are not compatible have also been discussed in common fixed point problems. Here we consider common fixed point problems of non-compatible and R-weakly commuting mappings in probabilistic semimetric spaces with the help of a control function. This work is in line with research in probabilistic fixed point theory using control functions. Further we support our results by examples.

FIXED POINT THEOREMS FOR MӦNCH TYPE MAPS IN ABSTRACT CONVEX UNIFORM SPACES

  • Kim, Hoonjoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.345-353
    • /
    • 2021
  • In this paper, first, we present new fixed point theorems for Mönch type multimaps on abstract convex uniform spaces and, also, a fixed point theorem for Mönch type multimaps in Hausdorff KKM L𝚪-spaces. Second, we show that Mönch type multimaps in the better admissible class defined on an L𝚪-space have fixed point properties whenever their ranges are Klee approximable. Finally, we obtain fixed point theorems on 𝔎ℭ-maps whose ranges are 𝚽-sets.

A Fixed-point Digital Signal Processor Development System Employing an Automatic Scaling (자동 스케일링 기능이 지원되는 고정 소수집 디지털 시그날 프로세서 개발 시스템)

  • 김시현;성원용
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.3
    • /
    • pp.96-105
    • /
    • 1992
  • The use of fixed-point digital signal processors, such as the TMS 320C25, requires scaling of data at each arithmetic step to prevent overflows while keeping the accuracy. A software which automatizes this process is developed for TMS 320C25. The programmers use a model of a hypothetical floating-point digital signal processor and a floating-point format for data representation. However, the program and data are automatically translated to a fixed-point version by this software. Thus, the execution speed is not sacrificed. A fixed-point variable has a unique binary-point location, which is dependent on the range of the variable. The range is estimated from the floating-point simulation. The number of shifts needed for arithmetic or data transfer step is determined by the binary-points of the variables associated with the operation. A fixed-point code generator is also developed by using the proposed automatic scaling software. This code generator produces floating-point assembly programs from the specifiations of FIR, IIR, and adaptive transversal filters, then floating-point programs are transformed to fixed-point versions by the automatic scaling software.

  • PDF