
J. Korean Math. Soc. 52 (2015), No. 1, pp. 125–139
http://dx.doi.org/10.4134/JKMS.2015.52.1.125

SOME FIXED POINT THEOREMS IN GENERALIZED

DARBO FIXED POINT THEOREM AND THE EXISTENCE

OF SOLUTIONS FOR SYSTEM OF INTEGRAL EQUATIONS

Reza Arab

Abstract. In this paper we introduce the notion of the generalized
Darbo fixed point theorem and prove some fixed and coupled fixed point
theorems in Banach space via the measure of non-compactness, which
generalize the result of Aghajani et al. [6]. Our results generalize, extend,
and unify several well-known comparable results in the literature. One of
the applications of our main result is to prove the existence of solutions
for the system of integral equations.

1. Introduction

The integral equation creates a very important and significant part of the
mathematical analysis and has various applications into real world problems.
On the other hand, Measures of noncompactness are very useful tools in the
wide area of functional analysis such as the metric fixed point theory and
the theory of operator equations in Banach spaces. They are also used in the
studies of functional equations, ordinary and partial differential equations, frac-
tional partial differential equations, integral and integro-differential equations,
optimal control theory, etc., see [1, 2, 3, 4, 7, 13, 14, 15, 16, 17]. In our inves-
tigations, we apply the method associated with the technique of measures of
noncompactness in order to generalize the Darbo fixed point theorem [10] and
to extend some recent results of Aghajani et al. [6], and also we are going to
study the existence of solutions for the following system of integral equations
(1.1)



x(t, s) =a(t, s) + f(t, s, x(t, s), y(t, s))

+ g(t, s, x(t, s), y(t, s))
∫ α1(t)

0

∫ α2(s)

0
k(t, s, u, v, x(u, v), y(u, v))dudv

y(t, s) =a(t, s) + f(t, s, y(t, s), x(t, s))

+ g(t, s, y(t, s), x(t, s))
∫ α1(t)

0

∫ α2(s)

0
k(t, s, u, v, y(u, v), x(u, v))dudv,
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for t, s ∈ R+, x, y ∈ E = BC(R+ ×R+). We show that Eq. (1.1) has solutions
that belong to E × E for E = BC(R+ × R+).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this work. Denote by R the set of real numbers and
put R+ = [0,+∞). Let (E, ‖ · ‖) be a real Banach space with zero element
0. Let B(x, r) denote the closed ball centered at x with radius r. The symbol
Br stands for the ball B(0, r). For X , a nonempty subset of E, we denote
by X and ConvX the closure and the closed convex hull of X , respectively.
Moreover, let us denote by ME the family of nonempty bounded subsets of E
and by NE its subfamily consisting of all relatively compact sets. We use the
following definition of the measure of noncompactness given in [10].

Definition 2.1. A mapping µ : ME → R+ is said to be a measure of noncom-
pactness in E if it satisfies the following conditions:

(10) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE ,
(20) X ⊂ Y ⇒ µ(X) ≤ µ(Y ),
(30) µ(X̄) = µ(X),
(40) µ(ConvX) = µ(X),
(50) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1],
(60) If (Xn) is a sequence of closed sets from mE such that Xn+1 ⊂ Xn(n =

1, 2, . . .) and if limn→∞ µ(Xn) = 0, then the set X∞ =
⋂∞

n=1Xn is
nonempty.

The family kerµ defined in axiom (10) is called the kernel of the measure of
noncompactness µ.

One of the properties of the measure of noncompactness is X∞ ∈ kerµ.
Indeed, from the inequality µ(X∞) ≤ µ(Xn) for n = 1, 2, 3, . . ., we infer that
µ(X∞) = 0. Further facts concerning measures of noncompactness and their
properties may be found in [9, 10].

Darbo’s fixed point theorem is a very important generalization of Schauder’s
fixed point theorem, and includes the existence part of Banach’s fixed point
theorem.

Theorem 2.2 (Schauder [4]). Let C be a closed, convex subset of a Banach

space E. Then every compact, continuous map T : C → C has at least one

fixed point.

In the following we state a fixed-point theorem of Darbo type proved by
Banaś and Goebel [10].

Theorem 2.3. Let C be a nonempty, closed, bounded, and convex subset of

the Banach space E and F : C → C be a continuous mapping. Assume that

there exist a constant k ∈ [0, 1) such that µ(FX) ≤ kµ(X) for any nonempty

subset of C. Then F has a fixed-point in the set C.
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The following theorem was proved in [6].

Theorem 2.4. Let Ω be a nonempty, bounded, closed and convex subset of a

Banach space E and let F : Ω → Ω be a continuous mapping such that

(2.1) µ(FX) ≤ ϕ(µ(X))

for any nonempty subset X of Ω where µ is an arbitrary measure of noncompact-

ness and ϕ : R+ → R+ is a nondecreasing functions such that limn→∞ ϕn(t) =
0 for each t ≥ 0. Then F has at least one fixed point in the set Ω.

The following concept of O(f ; .) and its examples was given by Altun and
Turkoglu [8].

Let F ([0,∞) be class of all function f : [0,∞) → [0,∞] and let Θ be class
of all operators

O(•; .) : F ([0,∞)) −→ F ([0,∞)), f → O(f ; .)

satisfying the following conditions:

(i) O(f ; t) > 0 for t > 0 and O(f ; 0) = 0,
(ii) O(f ; t) ≤ O(f ; s) for t ≤ s,
(iii) limn→∞O(f ; tn) = O(f ; limn→∞ tn),
(iv) O(f ; max{t, s}) = max{O(f ; t), O(f ; s)} for some f ∈ F ([0,∞).

Example 2.5. If f : [0,∞) → [0,∞) is a Lebesque integrable mapping which
is finite integral on each compact subset of [0,∞), non-negative and such that

for each t > 0,
∫ t

0
f(s)ds > 0, then the operator defined by

O(f ; t) =

∫ t

0

f(s)ds

satisfies the above conditions.

Example 2.6. If f : [0,∞) → [0,∞) is a non-decreasing, continuous function
such that f(0) = 0 and f(t) > 0 for t > 0, then the operator defined by

O(f ; t) =
f(t)

1 + f(t)

satisfies the above conditions.

Example 2.7. If f : [0,∞) → [0,∞) is a non-decreasing, continuous function
such that f(0) = 0 and f(t) > 0 for t > 0, then the operator defined by

O(f ; t) =
f(t)

1 + Ln(1 + f(t))

satisfies the conditions (i)-(iv).
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3. Fixed point theorem

This section is devoted to prove a few generalizations of Darbo fixed point
theorem (cf. Theorem 2.3), and as a consequence establish an existence result
of coupled fixed point for a class of condensing operators in Banach spaces,
which will be used in next section.

Theorem 3.1. Let C be a nonempty, bounded, closed, and convex subset of a

Banach space E and T : C → C be a continuous operator such that

(3.1) O(f ;µ(T (X))) + ϕ(µ(TX)) ≤ ψ[O(f ;µ(X))) + ϕ(µ(X))],

for any subset X of C, O(•; .) ∈ Θ and ϕ : R+ → R+ is a continuous function,

where µ is an arbitrary measure of noncompactness, ψ : [0,∞) → [0,∞) is a

nondecreasing functions such that limn→∞ ψn(t) = 0 for each t ≥ 0. Then T
has at least one fixed point in C.

Proof. Let C0=C, we construct a sequence {Cn} such that Cn+1=Conv(TCn)
for n ≥ 0. TC0 = TC ⊆ C = C0, C1 = Conv(TC0) ⊆ C = C0, therefore by
continuing this process we have

C0 ⊇ C1 ⊇ · · · ⊇ Cn ⊇ Cn+1 ⊇ · · · .

If there exists a natural number N such that µ(CN ) = 0, then CN is compact.
In this case Theorem 2.2 implies that T has a fixed point. So we assume that
µ(Cn) 6= 0 for n = 0, 1, 2, . . .. Also by (3.1) we have

O(f ;µ(Cn+1)) + ϕ(µ(Cn+1)) = O(f ;µ(Conv(TCn))) + ϕ(µ(Conv(TCn)))

= O(f ;µ(TCn)) + ϕ(µ(TCn))

≤ ψ[O(f ;µ(Cn)) + ϕ(µ(Cn))]

≤ ψ2[O(f ;µ(Cn−1)) + ϕ(µ(Cn−1))]

...

≤ ψn[O(f ;µ(C0)) + ϕ(µ(C0))]

= ψn[O(f ;µ(C)) + ϕ(µ(C))].(3.2)

Taking the limit of (3.2), as n→ ∞, we have

lim
n→∞

[O(f ;µ(Cn+1)) + ϕ(µ(Cn+1))] = 0,

therefore,

lim
n→∞

O(f ;µ(Cn+1)) = O(f ; lim
n→∞

µ(Cn+1)) = 0,

which, from (i), implies that

lim
n→∞

µ(Cn+1)) = 0.

Since Cn ⊇ Cn+1 and TCn ⊆ Cn for all n = 1, 2, . . ., then from (60), X∞ =⋂∞

n=1Xn is a nonempty convex closed set, invariant under T and belongs to
kerµ. Therefore Theorem 2.2 completes the proof. �
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An immediate consequence of Theorem 3.1 is the following.

Theorem 3.2. Let C be a nonempty, bounded, closed, and convex subset of

a Banach space E, ϕ : R+ → R+ and T : C → C are continuous functions.

Suppose that there exists a constant 0 < λ < 1, such that for all X ⊆ C,

O(f ;µ(T (X))) + ϕ(µ(TX)) ≤ λ[O(f ;µ(X))) + ϕ(µ(X))],

where µ is an arbitrary measure of noncompactness and O(•; .) ∈ Θ. Then T
has at least one fixed point in C.

Remark 3.3. It is clear that Theorem 3.1 is a generalization of Theorem 2.3.

Remark 3.4. It is clear that Theorem 3.1 is a generalization of Theorem 2.4
in fact letting f = I the identity mapping on [0,∞) (which we denote by
I[0,∞)),ϕ ≡ 0 and O(f ; , t) = t in (3.1) (it is obvious that O(f ; t) ∈ Θ) one has

µ(T (X)) = O(f ;µ(T (X))) ≤ ψ(O(f ;µ(X))) = ψ(µ(X)).

Corollary 3.5. Let C be a nonempty, bounded, closed, and convex subset of a

Banach space E and T : C → C be a continuous operator such that

O(f ;µ(T (X))) ≤ ψ[O(f ;µ(X)))],

for any subset X of C and O(•; .) ∈ Θ, where µ is an arbitrary measure of

noncompactness, ψ : [0,∞) → [0,∞) is a nondecreasing functions such that

limn→∞ ψn(t) = 0 for each t ≥ 0. Then T has at least one fixed point in C.

The following corollary gives us a fixed point theorem with a contractive
condition of integral type.

Corollary 3.6. Let C be a nonempty, bounded, closed, and convex subset of

a Banach space E and T : C → C be a continuous operator such that for any

X ⊆ C one has
∫ µ(T (X))

0

f(s) ds ≤ ψ(

∫ µ(X)

0

f(s) ds),

where µ is an arbitrary measure of noncompactness and f : [0,∞) → [0,∞)
is a Lebesgue-integrable mapping which is summable (i.e., with finite integral)
on each compact subset of [0,∞), non-negative and such that for each ǫ > 0,∫ ǫ

0
f(s) ds > 0 and ψ : [0,∞) → [0,∞) is a nondecreasing functions such that

limn→∞ ψn(t) = 0 for each t ≥ 0. Then T has at least one fixed point in C.

Corollary 3.7. Let C be a nonempty, bounded, closed, and convex subset of a

Banach space E, k ∈ (0, 1) and T : C → C be a continuous operator such that

for any X ⊆ C one has
∫ µ(T (X))

0

f(s) ds ≤ k

∫ µ(X)

0

f(s) ds,

where µ is an arbitrary measure of noncompactness and f : [0,∞) → [0,∞)
is a Lebesgue-integrable mapping which is summable (i.e., with finite integral)
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on each compact subset of [0,∞), non-negative and such that for each ǫ > 0,∫ ǫ

0
f(s) ds > 0. Then T has at least one fixed point in C.

Definition 3.8 ([11]). An element (x, y) ∈ X × X is called a coupled fixed
point of a mapping T : X ×X → X if T (x, y) = x and T (y, x) = y.

Theorem 3.9 ([10]). Suppose µ1, µ2, . . . , µn be the measures in E1, E2, . . . , En

respectively. Moreover assume that the function F : [0,∞)n → [0,∞) is convex
and F (x1, x2, . . . , xn) = 0 if and only if xi = 0 for i = 1, 2, . . . , n. Then

µ(X) = F (µ1(X1), µ2(X2), . . . , µn(Xn))

defines a measure of noncompactness in E1 ×E2 × . . .×En where Xi denotes

the natural projection of X into Ei for i = 1, 2, . . . , n.

Now, as results from Theorem 3.9, we present the following examples.

Example 3.10 ([10]). Let µ be a measure of noncompactness, considering
F (x, y) = max{x, y} for any x, y ∈ [0,∞), then all the conditions of Theo-
rem 3.9 are satisfied. Therefore, µ̃(X) = max{µ(X1), µ(X2)} is a measure of
noncompactness in the space E × E where Xi, i = 1, 2 denote the natural
projections of X .

Example 3.11 ([10]). Let µ be a measure of noncompactness. We define
F (x, y) = x+ y for any x, y ∈ [0,∞). Then F has all the properties mentioned
in Theorem 3.9. Hence µ̃(X) = µ(X1)+µ(X2) is a measure of noncompactness
in the space E × E where Xi, i = 1, 2 denote the natural projections of X .

Theorem 3.12. Let C be a nonempty, bounded, closed, and convex subset of

a Banach space E and T : C × C → C be a continuous function such that

(3.3)

O(f ;µ(T (X1 ×X2))) + ϕ(µ(T (X1 ×X2)))

≤
1

2
ψ[O(f ;µ(X1) + µ(X2)) + ϕ(µ(X1) + µ(X2))],

for any subset X1, X2 of C, where µ is an arbitrary measure of noncompactness

and ϕ : [0,∞) → [0,∞) is a nondecreasing, continuous and ϕ(t + s) ≤ ϕ(t) +
ϕ(s) for all t, s ≥ 0 and ψ : [0,∞) → [0,∞) is a nondecreasing function such

that limn→∞ ψn(t) = 0 for each t ≥ 0. Also O(•; .) ∈ Θ and O(f ; t + s) ≤
O(f ; t) +O(f ; s) for all t, s ≥ 0. Then T has at least a coupled fixed point.

Proof. First note that, from Example 3.11, µ̃(X) = µ(X1) + µ(X2) for any
bounded subset X ⊆ E × E defines a measure of noncompactness on E × E
where X1 and X2 denote the natural projections of X . We define a mapping

T̃ : C × C → C × C by

T̃ (x, y) = (T (x, y), T (y, x)).

It is obvious that T̃ is continuous. Now we claim that T̃ satisfies all the condi-
tions of Theorem 3.1. To prove this, let X ⊆ C × C be any nonempty subset.
Then by (20), (3.3) and (ii) we obtain

O(f ; µ̃(T̃ (X))) + ϕ(µ̃(T̃ (X)))
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≤ O(f ; µ̃(T (X1 ×X2)× T (X2 ×X1))) + ϕ(µ̃(T (X1 ×X2))× T (X2 ×X1)))

= O(f ;µ(T (X1 ×X2)) + µ(T (X2 ×X1)))

+ ϕ(µ(T (X1 ×X2)) + µ(T (X2 ×X1)))

= O(f ;µ(T (X1 ×X2))) +O(f ;µ(T (X2 ×X1)))

+ ϕ(µ(T (X1 ×X2))) + ϕ(µ(T (X2 ×X1)))

≤
1

2
ψ[O(f ;µ(X1) + µ(X2)) + ϕ(µ(X1) + µ(X2))]

+
1

2
ψ[O(f ;µ(X2) + µ(X1)) + ϕ(µ(X2) + µ(X1))]

= ψ[O(f ;µ(X1) + µ(X2)) + ϕ(µ(X1) + µ(X2))]

= ϕ[O(f ; µ̃(X)) + ϕ(µ̃(X))].

Hence, from Theorem 3.1, T̃ has at least one fixed point in C × C. Now the

conclusion of theorem follows from the fact that every fixed point of T̃ is a
coupled fixed point of T . �

As applications for Theorem 3.12, one can get the following Corollaries 3.13,
3.14 and 3.15.

Corollary 3.13. Let C be a nonempty, bounded, closed, and convex subset of

a Banach space E and T : C× → C be a continuous function such that

O(f ;µ(T (X1 ×X2))) ≤
1

2
ψ[O(f ;µ(X1) + µ(X2))],

for any subset X1, X2 of C, where µ is an arbitrary measure of noncompactness

and ψ : [0,∞) → [0,∞) is a nondecreasing function such that limn→∞ ψn(t) =
0 for each t ≥ 0. Also O(•; .) ∈ Θ and O(f ; t + s) ≤ O(f ; t) + O(f ; s) for all

t, s ≥ 0. Then T has at least a coupled fixed point.

Corollary 3.14. Let C be a nonempty, bounded, closed, and convex subset of

a Banach space E and T : C× → C be a continuous function such that

µ(T (X1 ×X2)) ≤
1

2
ϕ(µ(X1) + µ(X2)),

for any subset X1, X2 of C, where µ is an arbitrary measure of noncompactness

and ϕ : [0,∞) → [0,∞) is a nondecreasing functions such that limn→∞ ϕn(t) =
0 for each t ≥ 0. Then T has at least a coupled fixed point.

Corollary 3.15. Let C be a nonempty, bounded, closed, and convex subset of

a Banach space E and T : C× → C be a continuous function. Assume that

there exists a constant k ∈ [0, 1) such that

µ(T (X1 ×X2)) ≤
k

2
(µ(X1) + µ(X2)),

for any subset X1, X2 of C, where µ is an arbitrary measure of noncompactness.

Then T has at least a coupled fixed point.
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4. Applications

In what follows we will work in the classical Banach space BC(R+ × R+)
consisting of all real functions defined, bounded and continuous on R+ × R+

equipped with the standard norm

||x|| = sup{|x(t, s)| : t, s ≥ 0}.

Now, we present the definition of a special measure of noncompactness in
BC(R+ × R+) which will be used in the sequel, a measure that was intro-
duced and studied in [10].

To do this, let X be fix a nonempty and bounded subset of BC(R+ × R+)
and fix a positive number T . For x ∈ X and ǫ > 0, denote by ωT (x, ǫ) the
modulus of the continuity of function x on the interval [0, T ], i.e.,

ωT (x, ǫ) = sup{|x(t, s)− x(u, v)| : t, s, u, v ∈ [0, T ], |t− u| ≤ ǫ, |s− v| ≤ ǫ}.

Further, let us put

ωT (X, ǫ) = sup{ωT (x, ǫ) : x ∈ X},

ωT
0 (X) = lim

ǫ→0
ωT (X, ǫ)

and

ω0(X) = lim
T→∞

ωT
0 (X).

Moreover, for two fixed numbers t, s ∈ R+ let us the define the function µ on
the family MBC(R+×R+) by the following formula

µ(X) = ω0(X) + α(X),

where α(X) = lim supt,s→∞ diamX(t, s), X(t, s) = {x(t, s) : x ∈ X} and
diamX(t, s) = sup{|x(t, s) − y(t, s)| : x, y ∈ X}. Similar to [10] (cf. also [9]),
it can be shown that the function µ is the measure of noncompactness in the
space E.

As an application of our results we are going to study the existence of so-
lutions for the system of integral equations (1.1). Consider the following as-
sumptions

(A1) αi : R+ → R+ are continuous, nondecreasing and limt→∞ αi(t) = ∞,
i = 1, 2.

(A2) The function a : R+ × R+ → R+ is continuous and bounded.
(A3) k : R+ ×R+ ×R+ ×R+ ×R×R → R is continuous and there exists a

positive constant M such that
(4.1)

M = sup{

∫ α1(t)

0

∫ α2(s)

0

|k(t, s, u, v, x(u, v), y(u, v))|dudv : t, s ∈ R+, x, y ∈ E)}.
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Moreover,

(4.2)
lim

t,s→∞
|

∫ α1(t)

0

∫ α2(s)

0

[k(t, s, u, v, x2(u, v), y2(u, v))

− k(t, s, u, v, x1(u, v), y1(u, v))]dudv| = 0

uniformly respect to x1, y1, x2, y2 ∈ E.
(A4) The functions f, g : R+ × R+ × R × R → R are continuous and there

exists an upper semicontinuous and nondecreasing function ϕ : R+ → R

with limn→∞ ϕn(t) = 0 for each t ≥ 0. Also there exist two bounded
functions a1, a2 : R+ × R+ → R with bound

K = max{ sup
(t,s)∈R+×R+

a1(t, s), sup
(t,s)∈R+×R+

a2(t, s)}

and a positive constant D such that

|f(t, s, x2, y2)− f(t, s, x1, y1)| ≤
a1(t, s)ϕ(|x2 − x1|+ |y2 − y1|)

D + ϕ(|x2 − x1|+ |y2 − y1|)
,

and

|g(t, s, x2, y2)− g(t, s, x1, y1)| ≤
a2(t, s)ϕ(|x2 − x1|+ |y2 − y1|)

D + ϕ(|x2 − x1|+ |y2 − y1|)
,

for all t, s ∈ R+ and x1, y1, x2, y2 ∈ R. Additionally we assume that ϕ
is superadditive, i.e., ϕ(t)+ϕ(s) ≤ ϕ(t+ s) for all t, s ∈ R+. Moreover,
we assume that 2K(1 +M) ≤ D.

(A5) The functionsH1, H2 : R+×R+ → R+ defined byH1(t, s)= |f(t, s, 0, 0)|
and H2(t, s) = |g(t, s, 0, 0)| are bounded on R+ × R+ with

H0 = max{ sup
(t,s)∈R+×R+

H1(t, s), sup
(t,s)∈R+×R+

H2(t, s)}.

Theorem 4.1. If the assumptions (A1)-(A5) are satisfied, then the system of

equation (1.1) has at least one solution (x, y) ∈ E × E.

Proof. Define the operator T : E×E → E associated with the integral equation
(1.1) by

(4.3)
T (x, y)(t, s) = a(t, s) + f(t, s, x(t, s), y(t, s))

+ g(t, s, x(t, s), y(t, s))[F (x, y)(t, s)],

where,

(4.4) F (x, y)(t, s) =

∫ α1(t)

0

∫ α2(s)

0

k(t, s, u, v, x(u, v), y(u, v))dudv.

Solving Eq. (1.1) is equivalent to finding a coupled fixed point of the operator
T defined on the space E × E. For better readability, we break the proof into
a sequence of cases.

Case 1: T transforms the space E × E into E.
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By considering conditions of theorem we infer that T (x, y) is continuous on
R+×R+. Now we prove that T (x, y) ∈ E for any (x, y) ∈ E×E. For arbitrarily
fixed (t, s) ∈ R+ × R+ we have

|(T (x, y))(t, s)| ≤ |a(t, s)|+ |f(t, s, x(t, s), y(t, s))|(4.5)

+ |g(t, s, x(t, s), y(t, s))||F (x, y)(t, s)|

≤ |a(t, s)|+
Kϕ(|x(t, s)|+ |y(t, s)|)

D + ϕ(|x(t, s)| + |y(t, s)|)
+H0

+ [
Kϕ(|x(t, s)| + |y(t, s)|)

D + ϕ(|x(t, s)| + |y(t, s)|)
+H0]M.

Indeed,

|f(t, s, x(t, s), y(t, s))| ≤ |f(t, s, x(t, s), y(t, s))− f(t, s, 0, 0)|+ |f(t, s, 0, 0)|

≤
a1(t, s)ϕ(|x(t, s)| + |y(t, s)|)

D + ϕ(|x(t, s)| + |y(t, s)|)
+H1(t, s)

≤
Kϕ(|x(t, s)|+ |y(t, s)|)

D + ϕ(|x(t, s)| + |y(t, s)|)
+H0,

|g(t, s, x(t, s), y(t, s))| ≤ |g(t, s, x(t, s), y(t, s))− g(t, s, 0, 0)|+ |g(t, s, 0, 0)|

≤
a2(t, s)ϕ(|x(t, s)| + |y(t, s)|)

D + ϕ(|x(t, s)| + |y(t, s)|)
+H2(t, s)

≤
Kϕ(|x(t, s)|+ |y(t, s)|)

D + ϕ(|x(t, s)| + |y(t, s)|)
+H0,

|(F (x, y)(t, s)| = |

∫ α1(t)

0

∫ α2(s)

0

k(t, s, u, v, x(u, v), y(u, v))dudv|

≤

∫ α1(t)

0

∫ α2(s)

0

|k(t, s, u, v, x(u, v), y(u, v))|dudv ≤M.

By assumption (A4), we get

||T (x, y)|| ≤ ||a||+ (
Kϕ(||x||+ ||y||)

D + ϕ(||x||+ ||y||)
+H0)(1 +M)

≤ ||a||+ (K +H0)(1 +M).

(4.6)

Thus T maps the space E × E into E. More precisely, from (4.6) we obtain
that T (Br × Br) ⊆ Br, where r = ||a||+ (K +H0)(1 +M).

Case 2: we show that map T : Br ×Br → Br is continuous.
To do this, let us fix arbitrarily ǫ > 0 and take (x, y), (z, w) ∈ Br × Br such
that ||(x, y)− (z, w)|| ≤ ǫ. Then

|(T (x, y)(t, s))− (T (z, w)(t, s))|(4.7)

= |f(t, s, x(t, s), y(t, s)) + g(t, s, x(t, s), y(t, s))[F (x, y)(t, s)]

− f(t, s, z(t, s), w(t, s))− g(t, s, z(t, s), w(t, s))[F (z, w)(t, s)]|
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≤ |f(t, s, x(t, s), y(t, s))− f(t, s, z(t, s), w(t, s))|

+ |g(t, s, x(t, s), y(t, s))||(F (x, y))(t, s) − (F (z, w))(t, s)|

+ |g(t, s, x(t, s), y(t, s)− g(ts, z(t, s), w(t, s))||(F (z, w))(t, s)|

≤
a1(t, s)ϕ(|x(t, s) − z(t, s)|+ |y(t, s)− w(t, s)|)

D + ϕ(|x(t, s) − z(t, s)|+ |y(t, s)− w(t, s)|)

+ [
Kϕ(|x(t, s)| + |y(t, s)|)

D + ϕ(|x(t, s)| + |y(t, s)|)
+H0]|(F (x, y))(t, s) − (F (z, w))(t, s)|

+ [
a2(t, s)ϕ(|x(t, s) − z(t, s)|+ |y(t, s)− w(t, s)|)

D + ϕ(|x(t, s) − z(t, s)|+ |y(t, s)− w(t, s)|)
]M

≤
K(1 +M)ϕ(||x − z||+ ||y − w||)

D + ϕ(||x− z||+ ||y − w||)

+ [
Kϕ(||x||+ ||y||)

D + ϕ(||x||+ ||y||)
+H0]|(F (x, y))(t, s) − (F (z, w))(t, s)|.

Furthermore, with due attention to the condition (A2) there exists T > 0 such
that for t > T we have

|(F (x, y))(t, s) − (F (z, w))(t, s)|

(4.8)

= |

∫ α1(t)

0

∫ α2(s)

0

[k(t, s, u, v, x(u, v), y(u, v))− k(t, s, u, v, z(u, v), w(u, v))]dudv|

< ǫ.

Suppose that t, s > T . It follows (4.7) and (4.8) that

(4.9) |T (x, y)(t, s)− T (z, w)(t, s)| < ǫ.

If t, s ∈ [0, T ], then we obtain

(4.10) |(F (x, y))(t, s) − (F (z, w))(t, s)| ≤ α2
Tω1(k, ǫ),

where we denoted

αT = sup{αi(t) : t ∈ [0, T ], i = 1, 2},

and

ω1(k, ǫ) = sup{|k(t, s, u, v, x, y)− k(t, s, u, v, z, w)| : t, s ∈ [0, T ], u, v ∈ [0, αT ],

x, y, z, w ∈ [−r, r], ||(x, y) − (z, w)|| ≤ ǫ}.

By using the continuity of k on [0, T ]× [0, T ]× [0, αT ]× [0, αT ]× [−r, r]× [−r, r],
we have ω1(k, ǫ) → 0 as ǫ → 0. Now, linking the inequalities (4.7) and (4.10)
we deduce that

(4.11) |T (x, y)(t, s)− T (z, w)(t, s)| ≤ ǫ+ [K +H0]α
2
Tω1(k, ǫ).

The above established facts we conclude that T is continuous on Br ×Br.
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Case 3: In the sequel, we show that for any nonempty set X1, X2 ⊆ Br,

µ(T (X1 ×X2)) ≤
1

2
ϕ(µ(X1) + µ(X2)).

Indeed, by virtue of assumptions (A1)-(A5), we conclude that for any (x, y),
(z, w) ∈ X1 ×X2 and t, s ∈ R+,

|(T (x, y))(t, s)− (T (z, w))(t, s)|

≤
K(1 +M)ϕ(|x(t, s) − z(t, s)|+ |y(t, s)− w(t, s)|)

D + ϕ(|x(t, s) − z(t, s)|+ |y(t, s)− w(t, s)|)

+ [
Kϕ(|x(t, s)| + |y(t, s)|

D + ϕ(|x(t, s)| + |y(t, s)|)
+H0]β(t, s)

≤
1

2
ϕ(|x(t, s) − z(t, s)|+ |y(t, s)− w(t, s)|)

+ [
Kϕ(|x(t, s)| + |y(t, s)|

D + ϕ(|x(t, s)| + |y(t, s)|)
+H0]β(t, s),

where

β(t, s) = sup{|

∫ α1(t)

0

∫ α2(s)

0

[k(t, s, u, v, x(u, v), y(u, v))

− k(t, s, u, v, z(u, v), w(u, v))]dudv| : x, y ∈ E}.

This estimate allows us to derive the following one

diam(T (X1 ×X2))(t, s)

(4.12)

≤
1

2
ϕ(diamX1(t, s) + diamX2(t, s)) + [

Kϕ(|x(t, s)|+ |y(t, s)|

D + ϕ(|x(t, s)| + |y(t, s)|)
+H0]β(t, s).

Consequently, in view of the upper semicontinuity of the function ϕ and from
(4.12) and assumption (4.2) that

lim sup
t,s→∞

diam(T (X1 ×X2))(t, s)(4.13)

≤
1

2
ϕ(lim sup

t,s→∞

diamX1(t, s) + lim sup
t,s→∞

diamX2(t, s)).

Next, fix arbitrarily T > 0 and ǫ > 0. Let us choose t1, t2, s1, s2 ∈ [0, T ], with
|t2 − t1| ≤ ǫ, |s2 − s1| ≤ ǫ. Without loss of generality, we may assume that
t1 ≤ t2 and s1 ≤ s2. Then, for (x, y) ∈ X1 ×X2 we get

|f(t2, s2, x(t2, s2), y(t2, s2))− f(t1, s1, x(t1, s1), y(t1, s1))|

≤ |f(t2, s2, x(t2, s2), y(t2, s2))− f(t2, s2, x(t1, s1), y(t1, s1))|

+ |f(t2, s2, x(t1, s1), y(t1, s1))− f(t1, s1, x(t1, s1), y(t1, s1))|

≤
Kϕ(|x(t2, s2)− x(t1, s1)|+ |y(t2, s2)− y(t1, s1)|)

D + ϕ(|x(t2, s2)− x(t1, s1)|+ |y(t2, s2)− y(t1, s1)|)
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+ |f(t2, s2, x(t1, s1), y(t1, s1))− f(t1, s1, x(t1, s1), y(t1, s1))|

≤
1

2(1 +M)
ϕ(ωN (x, ǫ) + ωT (y, ǫ)) + ωT (f, ǫ),

and

|(F (x, y)(t2, s2)− (F (x, y)(t1, s1)|

≤

∫ α1(t2)

0

∫ α2(s2)

0

|k(t2, s2, u, v, x(u, v), y(u, v))

− k(t1, s1, u, v, x(u, v), y(u, v))|dudv

+

∫ α1(t2)

α1(t1)

∫ α2(s2)

α2(s1)

|k(t1, s1, u, v, x(u, v), y(u, v))|dudv

≤

∫ α1(t2)

0

∫ α2(s2)

0

ωT (k, ǫ)dudv +

∫ α1(t2)

α1(t1)

∫ α2(s2)

α2(s1)

KTdudv

≤ α2
Tω

T (k, ǫ) + ωT (α1, ǫ)ω
T (α2, ǫ)K

T ,

and

|g(t2, s2, x(t2, s2), y(t2, s2))(F (x, y)(t2, s2)− g(t1, s1, x(t1, s1), y(t1, s1))(F (x, y)(t1, s1)|

≤ |g(t2, s2, x(t2, s2), y(t2, s2))(F (x, y)(t2, s2)− g(t1, s1, x(t1, s1), y(t1, s1))(F (x, y)(t2, s2)|

+ |g(t1, s1, x(t1, s1), y(t1, s1))(F (x, y)(t2, s2)− g(t1, s1, x(t1, s1), y(t1, s1))(F (x, y)(t1, s1)|

≤
Kϕ(|x(t2, s2)− x(t1, s1)|+ |y(t2, s2)− y(t1, s1)|)

D + ϕ(|x(t2, s2)− x(t1, s1)|+ |y(t2, s2)− y(t1, s1)|)
|(F (x, y)(t2, s2)|

+ [
Kϕ(|x(t1, s1)|+ |y(t1, s1)|)

D + ϕ(|x(t1, s1)|+ |y(t1, s1)|)
+H0]|(F (x, y)(t2, s2)− (F (x, y)(t1, s1)|

≤
M

2(1 +M)
ϕ(ωT (x, ǫ) + ωT (y, ǫ)) + (K +H0)[α

2
Tω

T (k, ǫ) + ωT (α1, ǫ)ω
T (α2, ǫ)K

T ].

Therefore,

|(T (x, y))(t2, s2)− (T (x, y))(t2, s2)|

(4.14)

≤|a(t2, s2)− a(t1, s1)|+ |f(t2, s2, x(t2, s2), y(t2, s2))− f(t1, s1, x(t1, s1), y(t1, s1))|

+ |g(t2, s2, x(t2, s2), y(t2, s2))(F (x, y)(t2, s2)− g(t1, s1, x(t1, s1), y(t1, s1))(F (x, y)(t1, s1)|

≤ ωT (a, ǫ) +
λ

2(1 +M)
(ωT (x, ǫ) + ωT (y, ǫ)) + ωT (f, ǫ)

+
M

2(1 +M)
ϕ(ωT (x, ǫ) + ωT (y, ǫ))+ (K +H0)[α

2
Tω

T (k, ǫ) + ωT (α1, ǫ)ω
T (α2, ǫ)K

T ],

where we define

ωT (f, ǫ) = sup{|f(t2, s2, x, y)− f(t1, s1, x, y)| : t1, t2, s1, s2 ∈ [0, T ],

|t2 − t1| ≤ ǫ, |s2 − s1| ≤ ǫ, x, y ∈ [−r, r]},
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ωT (k, ǫ) = sup{|k(t2, s2, u, v, x, y)− k(t1, s1, u, v, x, y)| : t1, t2, s1, s2 ∈ [0, T ],

|t2 − t1| ≤ ǫ, |s2 − s1| ≤ ǫ, u, v ∈ [0, αT ], x, y ∈ [−r, r]},

ωT (αi, ǫ) = sup{|αi(t)− αi(s)| : t, s ∈ [0, T ], |t− s| ≤ ǫ, i = 1, 2},

ωT (x, ǫ) = sup{|x(t2, s2)− x(t1, s1)| : t1, t2, s1, s2 ∈ [0, T ],

|t2 − t1| ≤ ǫ, |s2 − s1| ≤ ǫ},

KT = sup{|k(t, s, u, v, x, y)| : t, s ∈ [0, T ], u, v ∈ [0, αT ], x, y ∈ [−r, r]},

ωT (a, ǫ) = sup{|a(t2, s2)− a(t1, s1)| : t1, t2, s1, s2 ∈ [0, T ],

|t2 − t1| ≤ ǫ, |s2 − s1| ≤ ǫ},

Since (x, y) is an arbitrary element of X1 × X2, the inequality (4.14) implies
that

ωT (T (X1 ×X2), ǫ) ≤ ωT (a, ǫ) +
1

2
ϕ(ωT (X1, ǫ) + ωT (X2, ǫ)) + ωT (f, ǫ)

+ (K +H0)[α
2
Tω

T (k, ǫ) + ωT (α1, ǫ)ω
T (α2, ǫ)K

T ].(4.15)

In view of the uniform continuity of the functions a, f and k on [0, T ]× [0, T ]
and [0, T ] × [0, T ] × [−r, r] and [0, T ] × [0, T ] × [0, αT ] × [0, αT ] × [−r, r] ×
[−r, r] respectively, we have that ωT (a, ǫ) → 0,ωT (f, ǫ) → 0 and ωT (k, ǫ) → 0.
Moreover, it is obvious that the constant KT is finite and ωT (α1, ǫ) → 0 and
ωT (α2, ǫ) → 0 as ǫ → 0. Thus, linking the established facts with the estimate
(4.15) we get

(4.16) ωo(T (X1 ×X2)) ≤
1

2
ϕ(ωo(X1) + ωo(X2)).

Finally, from (4.13), (4.16) and the definition of the measure of noncompactness
µ, we obtain

µ(T (X1 ×X2))

(4.17)

= ω0(T (X1 ×X2)) + lim sup
t,s→∞

diam(T (X1 ×X2))(t, s)

≤
1

2
ϕ(ωo(X1) + ωo(X2)) +

1

2
ϕ(lim sup

t,s→∞

diamX1(t, s) + lim sup
t,s→∞

diamX2(t, s))

≤
1

2
ϕ(ωo(X1) + lim sup

t,s→∞

diamX1(t, s) + ωo(X2) + lim sup
t,s→∞

diamX2(t, s))

=
1

2
ϕ(µ(X1) + µ(X2)).

Finally, applying Corollary 3.14, we obtain the desired result. �
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