• Title/Summary/Keyword: Fixed coordinate system

Search Result 98, Processing Time 0.026 seconds

A Study on Behavior of Rectangular Liquid Storage Structures (직사각형 단면을 갖는 유체 저장 구조물의 거동에 관한 연구)

  • 박장호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.101-107
    • /
    • 2003
  • Dynamic behavior of flexible rectangular liquid storage structures is analysed by the developed method. The rectangular liquid storage structures are assumed to be fixed to the ground and a moving coordinate system is used. The irrotational motion of invicid and incompressible ideal fluid is represented by two analytic solutions. One is the solution of the fluid motion in the rigid rectangular liquid storage structure due to ground motions and the other is the solution of the fluid motion by the motion of the wall in the flexible rectangular liquid storage structure. The motion of structure is modeled by finite elements. The fluid-structure interaction effect is reflected into the coupled equation of motion as added fluid mass matrix. The free surface sloshing motion and hydrodynamic pressure acting on the wall in the flexible rectangular liquid storage structure due to the horizontal ground motion are obtained by the developed method and verified.

MONTE CARLO ANALYSIS FOR FIRST ACQUISITION AND TRACKING OF THE KOMPSAT SPACECRAFT

  • Lee, Byeong-Seon;Lee, Jeong-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.417-425
    • /
    • 1998
  • Monte Carlo analysis is performed for the first acquisition and tracking of the KOMP-SAT spacecrat in GSOC tracking station after separation from Taurus launch vehicle. The error bounds in position and velocity vector in Earth-fixed coordinate system at injection point are assumed based on the previous launch mission. Ten thousands injection orbital elements with normal distribution are generated and propagated for Monte Carlo analysis. The tracking antenna pointing errors at spacecraft rising time and closest approach time at German Space Operations Center(GSOC) Weiheim track-ing station are derived. Then the tracking antenna scanning angles are analyzed for acquisition and tracking of the KOMPSAT signal.

  • PDF

A Three-Dimensional Numerical Analysis of In-Cylinder Flows in Reciprocating Model Engine (3차원 모형기관 실린더내의 흡입과정 유동에 대한 수치해석)

  • 하각현;김원갑;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.1-12
    • /
    • 1994
  • A model engine having a flat cylinder head and a piston face and an off-center intake valve is investigated in this analysis. Calculation domain is confined to the half of the cylinder with swirl free inlet velocity condition. Due to the absence of measured inlet conditions, the inlet flowrates during induction period are calculated from overall mass and energy conservation requirements. Finite difference equation for velocity and pressure were solved by modified SIMPLER algorithm, standard k-$\varepsilon$turbulence model and hybrid scheme. From the result of prediction, dimensionless velocity distribution and turbulence intensities are investigated at each crank angle.

  • PDF

Analysis of Fluid Flow in Two-dimensional Tank by Finite Difference Method (유한차분법에 의한 2차원 탱크내의 유체유동해석)

  • G.J.,Lee;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.9-16
    • /
    • 1987
  • In this paper, the fluid flow in the two-dimensional tank is analyzed by the Finite Difference Method. The Navier-Stokes equation is modified for the tank fixed coordinate system. For the treatment of the free surface, the Volume of Fluid Method by Hirt and Nichols is adopted. The continuity equation and the Poisson equation which is derived from the Navier-Stokes equation to find the pressure are solved by the Successive-Line-Overrelaxation Method. The comparison of the calculated results with experimental data show a favorable agreement. The fluid flow in the two-dimensional tank can be predicted reasonably before the free surface reaches breaking by this numerical method.

  • PDF

Navigation and Fault Detection Performance Analysis for INS Redundant Sensor Configurations (관성항법시스템의 중첩센서 배치에 대한 항법 및 고장검출 성능분석)

  • Kim, Jeong-Yong;Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.698-705
    • /
    • 2002
  • The redundant sensor configuration problem of inertial navigation system(INS) is considered and analyzed the navigation and fault detection performance according to various sensor configurations. We considered various kinds of redundant sensor configurations for symmetric, cone, and orthogonal configurations and compare the navigation and fault detection performance for the configurations. We show that the navigation and fault detection performance is not affected by the coordinate change for a fixed configuration.

Heat and mass flow in plasma arc keyhole-welding of thin plate (플라즈마 키홀 박판 용접에서의 열 및 물질 유동)

  • 김원훈;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.813-824
    • /
    • 1988
  • Use of a plasma arc as the source of energy for penetration welding of thin plates gives rise to a cylindrical hole surrounded by the molten metal. Material moves from the front to the rear of the hole by flowing around the hole as the workpiece is translated relatively to the arc. Based on the finite difference method, three different computer models have been proposed for the steady state, two dimensional heat and mass flow during the plasma arc welding. In the formulation energy equation was derived by the energy blance method through the cell control volume, and all the governing equations derived for the fixed coordinates was translated for the moving coordinate system. The driving force for fluid flow being considered was only electromagnetic force. The calculated and measured molten poon and HAZ width were compared and better agreement was obtained for the models considering the keyhole effect.

Surface Design Using B-spline Skinning of Cross-Sectional Curves under Volume Constraint (체적등의 구속조건하에서 단면곡선들로부터 B-spline Skinning을 사용한 곡면 디자인)

  • 김형철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.87-102
    • /
    • 1998
  • Given a sequence of cross-sectional curves, the skinning method generates a freeform surface that interpolates the given curves in that sequence. This thesis presents a construction method of a B-spline skinning surface that is fair and satisfies volume constraints. The fairness metric is based on the parametric energy functional of a surface. The degrees of freedom in surface control are closely related lo control points in the skinning direction. The algorithm fur finding a skinning surface consists of two step. In the first step, an initial fair surface is generated without volume constraints and one coordinate of each control point is fixed. In the second step, a final surface that meets all constraints is constucted by rearranging the other coordinates of each control point that defines the initial surface A variational Lagrange optimization method produces a system of nonlinear equations, which can be solved numerically. Moreover, the reparametrization of given sectional curves is important for the construction of a reasonable skinning surface. This thesis also presents an intuitive metric for reparametrization and gives some examples that are optimized with respect to that metric.

  • PDF

DEVELOPMENT OF CFD PROGRAM BASED ON A UNSTRUCTURED POLYHEDRAL GRID AND ITS APPLICATION TO FLOW AROUND A OSCILLATING CIRCULAR CYLINDER (비정렬 다면체 격자계 기반 유동 해석 프로그램의 개발 및 진동하는 실린더 주변 유동에의 적용)

  • Lee, Sang-Hyuk;Kang, Seong-Won;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.483-487
    • /
    • 2011
  • In the present study, a CFD program based on a finite volume method was developed by using an unstructured polyhedral grid system for the accurate simulation with the complex geometry of computational domain. To simulate the transient flow induced by the moving solid object, the program used a fractional step method and a ALE (Algebric Lagrangian-Eulerian) method. The grid deformation for the moving of solid object were performed with a spring analogy based on the center coordinate of each computational grid. To verify the present program with these methodologies, the numerical results of the flow around the fixed and oscillating circular cylinder were compared with the previous numerical results.

  • PDF

On Application of Optimization Scheme To Direct Numerical Analysis Of Slider

  • Hwang, Pyung;Khan, Polina;Pan, Galina
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.23-27
    • /
    • 2004
  • The object of the present work is the numerical analysis of the computer hard disk slider. The pressure between slider and disk surfaces is calculated using the Boundary Fitted Coordinate System and Divergence Formulation for the nonlinear Reynolds' equation solution. The optimization scheme is applied to search for the steady state position of the slider. The simplified method is given for the case of the fixed inclined pad. The film thickness ratios and pitching and rolling angles are considered as alternative choice of the slider's coordinates. The behavior of the objective function for the Negative Pressure slider is studied in details. Methods of conjugate directions and feasible directions are applied.

Vibration analysis of free-fixed hyperbolic cooling tower shells

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.785-799
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies of hyperboloidal shells free at the top edge and clamped at the bottom edge like a hyperboloidal cooling tower by the Ritz method based upon the circular cylindrical coordinate system instead of related 3-D shell coordinates which are normal and tangent to the shell midsurface. The Legendre polynomials are used as admissible displacements. Convergence to four-digit exactitude is demonstrated. Natural frequencies from the present 3-D analysis are also compared with those of straight beams with circular cross section, complete (not truncated) conical shells, and circular cylindrical shells as special cases of hyperboloidal shells from the classical beam theory, 2-D thin shell theory, and other 3-D methods.