• Title/Summary/Keyword: Fixed Point Algorithm

Search Result 362, Processing Time 0.028 seconds

STRONG CONVERGENCE OF A NEW ITERATIVE ALGORITHM FOR AVERAGED MAPPINGS IN HILBERT SPACES

  • Yao, Yonghong;Zhou, Haiyun;Chen, Rudong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.939-944
    • /
    • 2010
  • Let H be a real Hilbert space. Let T : $H\;{\rightarrow}\;H$ be an averaged mapping with $F(T)\;{\neq}\;{\emptyset}$. Let {$\alpha_n$} be a real numbers in (0, 1). For given $x_0\;{\in}\;H$, let the sequence {$x_n$} be generated iteratively by $x_{n+1}\;=\;(1\;-\;{\alpha}_n)Tx_n$, $n\;{\geq}\;0$. Assume that the following control conditions hold: (i) $lim_{n{\rightarrow}{\infty}}\;{\alpha}_n\;=\;0$; (ii) $\sum^{\infty}_{n=0}\;{\alpha}_n\;=\;{\infty}$. Then {$x_n$} converges strongly to a fixed point of T.

Face Recognition by Using FP-ICA Based on Secant Method

  • Cho, Yong-Hyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • This paper proposes an efficient face recognition using independent component analysis(ICA) derived from the fixed point(FP) algorithm based on secant method. The secant method can exclude the complex computation of differential process from the FP based on Newton method. The proposed ICA has been applied to recognize the 20 Yale face images of $324\times324$ pixels. The experimental results show that the proposed ICA is superior to PCA not only in the restoration performance of basis images but also in the recognition performance of the trained images and the test images. Then negative angle as similarity measures has better recognition ratio than city-block and Euclidean.

INERTIAL PICARD NORMAL S-ITERATION PROCESS

  • Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.995-1009
    • /
    • 2021
  • Many iterative algorithms like that Picard, Mann, Ishikawa and S-iteration are very useful to elucidate the fixed point problems of a nonlinear operators in various topological spaces. The recent trend for elucidate the fixed point via inertial iterative algorithm, in which next iterative depends on more than one previous terms. The purpose of the paper is to establish convergence theorems of new inertial Picard normal S-iteration algorithm for nonexpansive mapping in Hilbert spaces. The comparison of convergence of InerNSP and InerPNSP is done with InerSP (introduced by Phon-on et al. [25]) and MSP (introduced by Suparatulatorn et al. [27]) via numerical example.

GENERALIZED 𝛼-NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

  • Kim, Jong Kyu;Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.449-469
    • /
    • 2022
  • This paper deals with the new iterative algorithm for approximating the fixed point of generalized 𝛼-nonexpansive mappings in a hyperbolic space. We show that the proposed iterative algorithm is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur and Piri iteration processes for contractive mappings in a Banach space. We also establish some weak and strong convergence theorems for generalized 𝛼-nonexpansive mappings in hyperbolic space. The examples and numerical results are provided in this paper for supporting our main results.

INERTIAL PROXIMAL AND CONTRACTION METHODS FOR SOLVING MONOTONE VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS

  • Jacob Ashiwere Abuchu;Godwin Chidi Ugwunnadi;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.175-203
    • /
    • 2023
  • In this paper, we study an iterative algorithm that is based on inertial proximal and contraction methods embellished with relaxation technique, for finding common solution of monotone variational inclusion, and fixed point problems of pseudocontractive mapping in real Hilbert spaces. We establish a strong convergence result of the proposed iterative method based on prediction stepsize conditions, and under some standard assumptions on the algorithm parameters. Finally, some special cases of general problem are given as applications. Our results improve and generalized some well-known and related results in literature.

An Improved Newton-Raphson's Reciprocal and Inverse Square Root Algorithm (개선된 뉴톤-랍손 역수 및 역제곱근 알고리즘)

  • Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.46-55
    • /
    • 2007
  • The Newton-Raphson's algorithm for finding a floating point reciprocal and inverse square root calculates the result by performing a fixed number of multiplications. In this paper, an improved Newton-Raphson's algorithm is proposed, that performs multiplications a variable number. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal and inverse square tables with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal and inverse square root unit. Also, it can be used to construct optimized approximate tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc.

Motion Planning of Manipulators Using Kinematic Redundancy and ZMP Constraint Condition (기구학적 여유도와 ZMP 구속 조건을 이용한 매니퓰레이터의 동작 계획)

  • Choi, Jae-Yeon;Yoon, Hyun-Soo;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.308-316
    • /
    • 2011
  • This work deals with development of effective redundancy resolution algorithms for the motion control of manipulator. Differently from the typical kinematically redundant robots that are attached to the fixed ground, the ZMP condition should be taken into account in the manipulator motion in order to guarantee the system stability. In this paper, a new motion planning algorithm for redundant manipulator not fixed to the ground is introduced. A sequential redundancy resolution algorithm is proposed, which ensures the ZMP (Zero Moment Point) stability, the planned operational motion, and additional sub-criteria such as joint limit index. A geometric constraint equation derived by reshaping the existing ZMP equation enables one to employ the sequential redundancy algorithm. The feasibility of the proposed algorithm is verified by simulating a redundant manipulator model.

Performance Analysis and Efficient Decoding Algorithm for Space-Time Turbo codes (시공간 turbo 부호의 성능 분석과 효율적인 복호 알고리즘)

  • Shin Na na;Lee Chang woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.191-199
    • /
    • 2005
  • Space-time turbo codes have been studied extensively as a powerful and bandwidth efficient error correction code over the wireless communication environment. In this paper, the efficient algorithm for decoding space-time turbo codes is proposed. The proposed method reduces the computational complexity by approximating a prior information for a iterative decoder. The performance of space-time turbo codes is also analyzed by using the fixed point implementation and the efficient method for approximating the Log-MAP algorithm is proposed. It is shown that the BER performance of the proposed method is close to that of the Log-MAP algorithm.

Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data (2차원 라이다 센서 데이터 분류를 이용한 적응형 장애물 회피 알고리즘)

  • Lee, Nara;Kwon, Soonhwan;Ryu, Hyejeong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.348-353
    • /
    • 2020
  • This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.

Comparison of Analysis Performance of Additive Noise Signals by Independent Component Analysis (독립성분분석법에 의한 잡음첨가신호의 분석성능비교)

  • Cho Yong-Hyun;Park Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.294-299
    • /
    • 2005
  • This paper presents the separation performance of the linearly mixed image signals with additive noises by using an independent component analyses(ICAs) of the fixed-point(FP) algorithm based on Newton and secant method, respectively. The Newton's FP-ICA uses the slope of objective function, and the secant's FP-ICA also uses the tangent line of objective function. The 2 kinds of ICA have been applied to the 2 dimensional 2-image with $512\times512$ pixels. Then Gaussian noise and Laplacian noise are added to the mixed images, respectively. The experimental results show that the Newton's FP-ICA has better the separation speed than secant FP-ICA and the secant's FP-ICA has also the better separation rate than Newton's FP-ICA. Especially, the Newton and secant method gives relatively larger improvement degree in separation speed and rate as the noise increases.