• Title/Summary/Keyword: Fish karyotype

Search Result 58, Processing Time 0.03 seconds

Cytogenetic Analyses of Angelica Plants Using Feulgen Staining and Multicolor Fluorescence in Situ Hybridization (Multicolor FISH와 Feulgen 염색법을 이용한 Angelica속 식물의 세포유전학적 분석)

  • Koo, Dal-Hoe;Kim, Soo-Young;Bang, Kyong-Hwan;Seong, Nak-Sul;Bang, Jae-Wook
    • Journal of Plant Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • Karyotype analysis and chromosomal localization of 5S and 45S rDNAs using multi-color fluorescence in situ hybridization (McFISH) technique were carried out in two Angelica species. The numbers of diploid chromosomes were the same in two same in two species as 2n=22, however the lengths of chromosomes were varied from 4.25 to 6.50 ${\mu}{\textrm}{m}$ in A gigas and 4.95 to 8.50 ${\mu}{\textrm}{m}$ in A acutiloba. The chromosomes of A. gigas were composed of five metacentric and six submetacentric pairs, while those of A. acutiloba were six metacentic, one submetacentric and four subtelocentric paris. In FISH experiments, the numbers and size of 45S rDNA signals were varied between two species, however dach signal of the 5S rDNA was observed in two species.

Karyotypic Analysis and Physical Mapping of rRNA Gene Loci in Persicaria tinctoria (쪽의 핵형분석과 rRNA 유전자의 염색체상 위치)

  • Choi, Hae-Woon;Lee, Sang-Hoon;Kim, Soo-Young;Bang, Jae-Wook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.195-198
    • /
    • 2008
  • Karyotypic analysis and FISH (fluorescence in situ hybridization) with 45S and 5S rRNA genes were carried out in Persicaria tinctoria H Gross. The somatic metaphase chromosomes were ranged from 2.25 ${\mu}m$ to 1.50 ${\mu}m$ in length. Chromosome number was 2n = 4x = 40 with the basic number of x = 10. The chromosome complement of the species consisted of 16 pairs of metacentrics (chromososomes 1,2,3,4,6,7,8,9, 10, 11, 12, 13, 15, 18, 19 and 20) and 4 pairs of submetacentrics (chromosome 5, 14, 16 and 17). The karyotype formula was K(2n) = 4x = 32 m + 8 sm. In FISH analysis, three pairs of 45S rRNA gene loci on the terminal region of submetacentrics (chromosomes 5, 16 and 17) and two pairs of 5S rRNA gene loci on the centromeric region of metacentrics (chromosomes 9 and 11) were detected, respectively.

Pseudoisodicentric X chromosome in a female with primary amenorrhea (원발성 무월경 여성에서 관찰된 Pseudoisodicentric X 염색체)

  • Park, Sang-Hee;Shim, Sung-Han;Chin, Mi-Uk;Kang, Su-Jin;Bae, Sung-Mi;Sohn, Soo-Min;Cha, Dong-Hyun;Yoon, Tae-Ki;Cho, Jung-Hyun
    • Journal of Genetic Medicine
    • /
    • v.5 no.1
    • /
    • pp.61-64
    • /
    • 2008
  • A 24-year-old female with primary amenorrhea was referred for a chromosome study. The karyotype of the patient was 46,X,der(X) under initial GTG-banding analysis. Fluorescence in situ hybridization (FISH) analysis with an LSI Kallmann (KAL) region probe [probes for Xp22.3(KAL) and CEP(X) for control] was carried out. The abnormal chromosome was KAL- and CEP(X)${\times}2$. In addition, interphase FISH analysis revealed the patient to be mosaic for two different cell lines: 90% of cells had three signals and 10% of the cells had only one signal for CEP(X). Based on these results, the karyotype of the patient was 45,X/46,X,psu idic(X)(p22.1), which is partial trisomy for Xqter${\rightarrow}$Xp22.1 and partial monosomy for Xpter${\rightarrow}$Xp22.1. This karyotype was considered a variant of Turner syndrome. In summary, Idic(X) and low-level mosaicism was successfully characterized by FISH analysis with a CEP(X) probe.

  • PDF

Karyotype Analysis of Liobagrus somjinensis, an Endemic Species in Korea (한국 고유종 섬진자가사리 Liobagrus somjinensis의 핵형 분석)

  • Cho, Yun Jeong;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.28 no.3
    • /
    • pp.175-178
    • /
    • 2016
  • The karyotype analysis of Liobagrus somjinensis, an endemic Korean freshwater fish with restricted waters and a new species of torrent catfish was carried out from nine females and eight males of Somjingang River, Sikjeong-dong, Namwon-si, Jeollabuk-do, Korea. The diploid number of chromosomes was 42, and its karyotype was composed of 28 metacentrics and 14 submetacentrics; 84 FN (fundamental number). Polyploidy and sex dimorphism were not observed in the present species. The chromosome number of L. somjinensis was the same as its congeners, but there was a difference in karyotypes.

Utility of a multiplex reverse transcriptase-polymerase chain reaction assay (HemaVision) in the evaluation of genetic abnormalities in Korean children with acute leukemia: a single institution study

  • Kim, Hye-Jin;Oh, Hyun Jin;Lee, Jae Wook;Jang, Pil-Sang;Chung, Nack-Gyun;Kim, Myungshin;Lim, Jihyang;Cho, Bin;Kim, Hack-Ki
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.6
    • /
    • pp.247-253
    • /
    • 2013
  • Purpose: In children with acute leukemia, bone marrow genetic abnormalities (GA) have prognostic significance, and may be the basis for minimal residual disease monitoring. Since April 2007, we have used a multiplex reverse transcriptase-polymerase chain reaction tool (HemaVision) to detect of GA. Methods: In this study, we reviewed the results of HemaVision screening in 270 children with acute leukemia, newly diagnosed at The Catholic University of Korea from April 2007 to December 2011, and compared the results with those of fluorescence in situ hybridization (FISH), and G-band karyotyping. Results: Among the 270 children (153 males, 117 females), 187 acute lymphoblastic leukemia and 74 acute myeloid leukemia patients were identified. Overall, GA was detected in 230 patients (85.2%). HemaVision, FISH, and G-band karyotyping identified GA in 125 (46.3%), 126 (46.7%), and 215 patients (79.6%), respectively. TEL-AML1 (20.9%, 39/187) and AML1-ETO (27%, 20/74) were the most common GA in ALL and AML, respectively. Overall sensitivity of HemaVision was 98.4%, with false-negative results in 2 instances: 1 each for TEL-AML1 and MLL-AF4. An aggregate of diseases-specific FISH showed 100% sensitivity in detection of GA covered by HemaVision for actual probes utilized. G-band karyotype revealed GA other than those covered by HemaVison screening in 133 patients (49.3%). Except for hyperdiplody and hypodiploidy, recurrent GA as defined by the World Health Organizationthat were not screened by HemaVision, were absent in the karyotype. Conclusion: HemaVision, supported by an aggregate of FISH tests for important translocations, may allow for accurate diagnosis of GA in Korean children with acute leukemia.

Cytological Analyses of Iris ruthenica K. Gawl. (Iridaceae), an Endangered Species in Korea

  • Choi, Bokyung;Temsch, Eva M.;Weiss-Schneeweiss, Hanna;So, Soonku;Myeong, Hyeon-Ho;Jang, Tae-Soo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.24-24
    • /
    • 2019
  • Iris L. is a perennial genus comprising approximately 300 species worldwide, with the greatest number of endemic species occurring in Asia. Iris is one of the largest genera in the family Iridaceae and includes ca. 15 species native to Korea. Although chromosome number change, karyotype restructuring, and genome size variation play an important role in plant genome diversification, understanding the karyotype variation in Korean Iris species has been hampered by the wide range of base chromosome number (x = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22) reported to date. This study documents the chromosome numbers, karyotype structure and genome size variation in Iris ruthenica K. Gawl., an endangered species in Korea obtained using classic Feulgen staining and flow cytometry. The chromosome number of all investigated plants from the nine populations was 2n = 42. All individuals studied possessed metacentric and submetacentric chromosomes. The genome size of the I. ruthenica in eight wild populations ranged from 2.39 pg/1C to 2.45 pg/1C ($2.42{\pm}0.02pg/1C$: $mean{\pm}SD$). This study provides the first report of genome size variation in Iris ruthenica in Korea. This study lays foundation for cytogenetic further analyses employing by fluorescence in situ hybridization (FISH) to better understand the chromosomal evolution in this species and in the whole genus.

  • PDF

FISH Karyotype Analysis of Four Wild Cucurbitaceae Species Using 5S and 45S rDNA Probes and the Emergence of New Polyploids in Trichosanthes kirilowii Maxim

  • Waminal, Nomar Espinosa;Kim, Hyun Hee
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.869-876
    • /
    • 2015
  • Wild relative species of domesticated crops are useful genetic resources for improving agronomic traits. Cytogenetic investigations based on chromosome composition provide insight into basic genetic and genomic characteristics of a species that can be exploited in a breeding program. Here, we used FISH analysis to characterize the ploidy level, chromosome constitution, and genomic distribution o f 5S and 4 5S r ibosomal DNA (rDNA) in four wild Cucurbitaceae species, namely, Citrullus lanatus (Thunb.) Mansf. var. citroides L. H. Bailey (2n = 22), Melothria japonica Maxim. (2n = 22), Sicyos angulatus L. (2n = 24), and Trichosanthes kirilowii Maxim. (2n = 66, 88, 110 cytotypes), collected in different areas of Korea. All species were diploids, except for T. kirilowii, which included hexa-, octa-, and decaploid cytotypes (2n = 6x = 66, 8x = 88, and 10x = 110). All species have small metaphase chromosomes in the range of $2-5{\mu}m$. The 45S rDNA signals were localized distally compared to the 5S rDNA. C. lanatus var. citroides and M. japonica showed one and two loci of 45S and 5S rDNA, respectively, with co-localization of rDNA signals in one M. japonica chromosome. S. angulatus showed two co-localized signals of 5S and 45S rDNA loci. The hexaploid T. kirilowii cytotype showed five signals each for 45S and 5S rDNA, with three being co-localized. This is the first report of hexaploid and decaploid cytotypes in T. kirilowii. These results will be useful in future Cucurbitaceae breeding programs.

Centromere Repeat DNA Originated from Brassica rapa is Detected in the Centromere Region of Raphanus sativus Chromosomes

  • Hwang, Yoon-Jung;Yu, Hee-Ju;Mun, Jeong-Hwan;Bok, Kwang;Park, Beom-Seok;Lim, Ki-Byung
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.751-756
    • /
    • 2012
  • Fluorescence in situ hybridization (FISH) is a powerful tool for the detection of DNA sequences in the specific region of the chromosomes. As well as for the integrated physical mapping, FISH karyotype analysis has to be preceded. Karyotype of Raphanus sativus 'Wonkyo 10039' was analyzed by a dual-color FISH technique; using various repetitive DNA probes, including 5S rDNA, 45S rDNA, and centromere retrotransposon. The length of the somatic metaphase chromosome ranged from 1.35 to $2.06{\mu}m$ with a total length of $15.29{\mu}m$. The chromosome complements comprised of eight pairs of metacentrics and one pair of submetacentric. Bleached DAPI Band analysis revealed a heterochromatin region, covering 28.6% to 50.4% each chromosomes. 5S and 45S rDNA sequences were located on two and three pairs of chromosomes, respectively. The centromere retrotransposon of Brassica (CRB) is a major component in Brassica related species that has been maintained as a common centromere component. CRB signals were detected on the centromere and pericentromeric region of R. sativus 'Wonkyo 10039' and three basic Brassica species (B. rapa, B. nigra, and B. oleracea). These results will provide a valuable background for physical mapping and elucidation of the evolutionary relationship among the Brassica related species.

FISH Karyotype and GISH Meiotic Pairing Analyses of a Stable Intergeneric Hybrid xBrassicoraphanus Line BB#5

  • Belandres, Hadassah Roa;Waminal, Nomar Espinosa;Hwang, Yoon-Jung;Park, Beom-Seok;Lee, Soo-Seong;Huh, Jin Hoe;Kim, Hyun Hee
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.83-92
    • /
    • 2015
  • xBrassicoraphanus line BB#5, a new synthetic intergeneric hybrid between Brassica rapa L. ssp. pekinensis and Raphanus sativus L. var. rafiphera induced by N-methyl-N-nitroso-urethane mutagenesis in microspore culture, shows high seed fertility and morphological uniformity. Dual-color fluorescence in situ hybridization (FISH) using 5S and 45S rDNA probes and genomic in situ hybridization (GISH) using B. rapa genomic DNA probe were carried out to analyze the chromosome composition and the meiosis pairing pattern compared to its parental lines. The somatic chromosome complement is 2n = 38, which consists of 17 metacentric and two submetacentric chromosomes with lengths of 2.18 to $5.01{\mu}m$. FISH karyotype analysis showed five and eight pairs of 5S and 45S rDNA loci. GISH meiosis pairing analysis showed that 19 complete bivalents were most frequent and accounted for 42% of the 100 pollen mother cells examined. Based on chromosome number, size, morphology, rDNA distribution, and meiosis pairing pattern, both parental genomes of B. rapa and R. sativus appear to exist in xBrassicoraphanus line BB#5, demonstrating its genome integrity. Such stable chromosome constitutions and meiotic pairing patterns in somatic and meiotic cells are very rare in natural and synthetic intergeneric hybrids. Chromosomal studies and genetic and phenotypic changes in allopolyploids a re discussed. The results p resented h erein will b e usef ul f or f urther g enomic s tudy o f xBrassicoraphanus lines and their improvement as promising new breeding varieties.

Karyotype Analysis and rDNA Physical Mapping in Rye (Secale cereale L.) (호밀(Secale cereale L.)의 핵형분석과 rDNA의 Physical Mapping)

  • Lee, Joon Soo;Seo, Bong Bo;Kim, Min
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • This study was carried out to determine the chromosomal localization of the 5S and 18S-26S ribosomal DNA(rDNA) genes by means of fluorescence in situ hybridization(FISH) techniques, and the constitutive heterochromatin detected by means of Gimsa C-banding technique in rye(Secale cereale L.). The somatic chromosomes number was 2n=14. The karyotype consists of four pairs of metacentrics(chromosomes 1, 2, 3, and 7) and three pairs of submetacentrics(chromosomes 4, 5, and 6). Secondary constrictions appeared in the short arm of chromosome 1. The 5S rDNA genes have been located on two pairs of chromosomes 1 and 5, and 18S-26S rDNAs genes have been located on one pair of chromosome 1. 5S rDNA genes were detected on the distal region of the secondary constrictions in nucleolus organizer regions(NOR) in chromosome 1, and other detected on the intercalary region in the short arm of chromosome 5.