DOI QR코드

DOI QR Code

Centromere Repeat DNA Originated from Brassica rapa is Detected in the Centromere Region of Raphanus sativus Chromosomes

  • Hwang, Yoon-Jung (Department of Horticultural Science, Kyungpook National University) ;
  • Yu, Hee-Ju (Department of Life Sciences, The Catholic University of Korea) ;
  • Mun, Jeong-Hwan (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Bok, Kwang (Department of Horticultural Science, Kyungpook National University) ;
  • Park, Beom-Seok (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lim, Ki-Byung (Department of Horticultural Science, Kyungpook National University)
  • Received : 2012.08.29
  • Accepted : 2012.09.19
  • Published : 2012.12.31

Abstract

Fluorescence in situ hybridization (FISH) is a powerful tool for the detection of DNA sequences in the specific region of the chromosomes. As well as for the integrated physical mapping, FISH karyotype analysis has to be preceded. Karyotype of Raphanus sativus 'Wonkyo 10039' was analyzed by a dual-color FISH technique; using various repetitive DNA probes, including 5S rDNA, 45S rDNA, and centromere retrotransposon. The length of the somatic metaphase chromosome ranged from 1.35 to $2.06{\mu}m$ with a total length of $15.29{\mu}m$. The chromosome complements comprised of eight pairs of metacentrics and one pair of submetacentric. Bleached DAPI Band analysis revealed a heterochromatin region, covering 28.6% to 50.4% each chromosomes. 5S and 45S rDNA sequences were located on two and three pairs of chromosomes, respectively. The centromere retrotransposon of Brassica (CRB) is a major component in Brassica related species that has been maintained as a common centromere component. CRB signals were detected on the centromere and pericentromeric region of R. sativus 'Wonkyo 10039' and three basic Brassica species (B. rapa, B. nigra, and B. oleracea). These results will provide a valuable background for physical mapping and elucidation of the evolutionary relationship among the Brassica related species.

Keywords

References

  1. Cao, W. 2003. Cytogenetic and molecular genetic evidence on evolution of genus Triticum, p. 223-247. In: A.K. Sharma and A. Sharma (eds.). Plant genome: Biodiversity and evolution. Phanerogam-Angiosperm, Science Publisher, Enfield (NH).
  2. Dolezel, J., J. Bartos, H. Voglmayr, and J. Greilhuber. 2003. Letter to the editor: Nuclear DNA content and genome size of trout and human. Cytometry 51A:127-128. https://doi.org/10.1002/cyto.a.10013
  3. Fukui, K., S. Nakayama, N. Ohmido, H. Yoshiaki, and M. Yamabe. 1998. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes. Theor. Appl. Genet. 96:325-330. https://doi.org/10.1007/s001220050744
  4. Gerber, G. and D. Schweizer. 1988. Cytochemical heterochromatin differentiation in Sinapis alba (Crucuferae) using a simple air-drying technique for producing chromosome spreads. Plant Syst. Evol. 158:97-106.
  5. Gerlach, W.L. and J.R. Bedbrook. 1979. Cloning and characterization of ribosomal rDNA genes from wheat and barley. Nucleic Acids Res. 7:1869-1885. https://doi.org/10.1093/nar/7.7.1869
  6. Hasterok, R., E. Wolny, M. Hosiawa, M. Kowalczyk, S. Kulak-Ksiazczyk, T. Ksiazczyk, W.K. Heneen, and J. Maluszynska. 2006. Comparative analysis of rDNA distribution in chromosome of various species of Brassicaceae. Ann. Bot. 97:205-216.
  7. Hwang, Y.J., H.H. Kim, S.J. Kwon, T.J. Yang, H.C. Ko, B.S. Park, J.D. Chung., and K.B. Lim. 2009. Karyotype analysis of three Brassica species using five different repetitive DNA markers by fluorescence in situ hybridization. Kor. J. Hort. Sci. Technol. 27:456-463.
  8. Johnston, J.S., A.E. Pepper, A.E. Hall, Z.J. Chen, G. Hodnett, J. Drabek, R. Lopez, and J. Price. 2005. Evolution of genome size in Brassicaceae. Ann. of Bot. 95:229-235. https://doi.org/10.1093/aob/mci016
  9. Kaneko, Y., C. Kimizuka-Takagi, S.W. Bang, and Y. Matsuzawa. 2007. Radish, p. 141-160. In: C. Kole (ed.). Genome mapping and molecular breeding in plants, Vol. 5. Vegetables Springer-Verlag, Berlin Heidelberg, Germany.
  10. Kitamura, S. 1958. Varieties and transitions of radish, p. 1-19. In: I. Nishiyama (ed.). Japanese radish. Japan Science Society Press, Tokyo, Japan.
  11. Levan, A., K. Fredga, and A.A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52:517-523.
  12. Lim, K.B., J.H. De Jong, T.J. Yang, J.Y. Park, S.J. Kwon, J.S. Kim, M.H. Lim, J.A. Kim, M.A. Jin, S.H. Kim. Y.P. Lim, J.W. Bang, H.I. Kim, and B.S. Park. 2005. Characterization of rDNA and tandem repeats in the heterochromatin of Brassica rapa. Mol. Cell. 19:436-444.
  13. Lim, K.B., T.J. Yang, Y.J. Hwang, J.S. Kim, J.Y. Park, S.J. Kwon, J.A. Kim, B.S. Choi, M.H. Lim, M. Jin, H. de Jong, I. Bancroft, Y.P. Lim, and B.S. Park. 2007. Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J. 49:173-183. https://doi.org/10.1111/j.1365-313X.2006.02952.x
  14. Lou, Q., M. Iovene, D.M. Spooner, C. Robin Buell., and J.M. Jiang. 2010. Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119:435-442. https://doi.org/10.1007/s00412-010-0269-6
  15. Mukherjee, P. 1979. Karyotypic variation in ten strains of Indian radish (Raphanus sativus L.). Cytologia 44:347-352. https://doi.org/10.1508/cytologia.44.347
  16. Mun, J.H., S.J. Kwon, Y.J. Seol, J.A. Kim, M. Jin, J.S. Kim, M.H. Lim, S.I. Lee, J.K. Hong, T.H. Park, S.C. Lee, B.J. Kim, M.S. Seo, S. Baek, M.J. Lee, J.Y. Hahn, Y.J. Hwang, K.B. Lim, J.Y. Park, J. Lee, T.J. Yang, H.Y. Yu, I.K. Choi, B.S. Choi, S.R. Choi, N. Ramchiary, Y.P. Lim, F. Fraser, N. Drou, E. Soumpourou, M. Trick, I. Bancroft, A.G. Sharpe, I.A.P. Parkin, J. Batley, D. Edwards, and B.S. Park. 2010. Sequence and structure of Brassica rapa chromosome A3. Genome Biol. 11:R94. https://doi.org/10.1186/gb-2010-11-9-r94
  17. Richharia, R.H. 1937. Cytological investigation of Raphanus sativus, Brassica oleracea, and their $F_1\;and\;F_2$ hybrids. J. Genet. 34:19-44. https://doi.org/10.1007/BF02982253
  18. Schrader, O., H. Budahn, and R. Ahne. 2000. Detection of 5S and 25S rRNA genes in Sinapis alba, Raphanus sativus and Brassica napus by double fluorescence in situ hybridization. Theor. Appl. Genet. 100:665-669. https://doi.org/10.1007/s001220051337
  19. Snowdon, R.J., W. Kohler, and A. Kohler. 1997. Chromosomal localization of rDNA loci in the Brassica A and C genomes. Genome 40:582-587. https://doi.org/10.1139/g97-076
  20. Yang, Y.W., P.Y. Tai, Y. Chen, and W.H. Li. 2002. A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. Mol. Phylogenet. Evol. 23:268-275. https://doi.org/10.1016/S1055-7903(02)00026-X

Cited by

  1. Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing vol.128, pp.2, 2015, https://doi.org/10.1007/s00122-014-2426-4
  2. FISH Karyotype and GISH Meiotic Pairing Analyses of a Stable Intergeneric Hybrid xBrassicoraphanus Line BB#5 vol.33, pp.1, 2015, https://doi.org/10.7235/hort.2015.14151
  3. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes vol.129, pp.7, 2012, https://doi.org/10.1007/s00122-016-2708-0
  4. Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific hybridization between sympatric flowering cherries vol.19, pp.1, 2012, https://doi.org/10.1186/s13059-018-1497-y
  5. Cytogenetic Analyses Revealed Different Genome Rearrangement Footprints in Four ×Brassicoraphanus Lines with Different Fertility Rates vol.7, pp.2, 2019, https://doi.org/10.9787/pbb.2019.7.2.95
  6. Subgenome Discrimination in Brassica and Raphanus Allopolyploids Using Microsatellites vol.10, pp.9, 2021, https://doi.org/10.3390/cells10092358