• 제목/요약/키워드: First-Order System Feedback Control

검색결과 69건 처리시간 0.031초

First-Order System 피드백 공정 조정에서 이상원인의 영향 (Impact of Special Causes on First-Order System Feedback Process Adjustment)

  • 전상표
    • 대한안전경영과학회지
    • /
    • 제9권5호
    • /
    • pp.49-55
    • /
    • 2007
  • A special cause producing temporary deviation in the underlying process can influence on process adjustment in First-Order System feedback control system. In this paper, the impact of special causes on the forecasts and the process adjustment that is based on the EWMA forecasts are derived for a first-order system. For some special causes with patterned type of contamination, the influence of the causes on the output process are explicitly investigated. A data set, contaminated by a special cause of level shift, is analyzed to confirm the impact numerically.

A New Approach to Design of a Dynamic Output Feedback Stabilizing Control Law for LTI Systems

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon;Kim Kab-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.618-624
    • /
    • 2005
  • We present a new state-space approach to construct a dynamic output feedback controller which stabilizes a class of linear time invariant systems. All the states of the given system are not measurable and only the output is used to design the stabilizing control law. In the design scheme, however, we first assume that the given system can be stabilized by a feedback law composed of the output and its derivatives of a certain order. Beginning with this assumption, we systematically construct a dynamic system which removes the need of the derivatives. The main advantage of the proposed controller is regarding the controller order, which may be smaller than that of conventional output feedback controller. Using a simple numerical example, it is shown that the order of the proposed controller is indeed smaller than that of reduced-order observer based output feedback controller.

Fixed-Order $H_{\infty}$ Controller Design for Descriptor Systems

  • Zhai, Guisheng;Yoshida, Masaharu;Koyama, Naoki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.898-902
    • /
    • 2003
  • For linear descriptor systems, we consider the $H_{INFTY}$ controller design problem via output feedback. Both static output feedback and dynamic one are discussed. First, in the case of static output feedback, we reduce our control problem to solving a bilinear matrix inequality (BMI) with respect to the controller coefficient matrix, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measured output matrix (or the control input matrix), we propose setting the Lyapunov matrix in the BMI as being block diagonal appropriately so that the BMI is reduced to LMIs. For fixed-order dynamic $H_{INFTY}$ output feedback, we formulate the control problem equivalently as the one of static output feedback design, and thus the same approach can be applied.

  • PDF

Active feedback control for cable vibrations

  • Ubertini, Filippo
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.407-428
    • /
    • 2008
  • The nonlinear mechanics of cable vibration is caught either by analytical or numerical models. Nevertheless, the choice of the most appropriate method, in consideration of the problem under study, is not straightforward. A feedback control policy might even enhance the complexity of the system. Thus, in order to design a suitable controller, different approaches are here adopted. Devices mounted transversely to the cable in the two directions, close to one of its ends, supply the feedback control action based on the observation of the response in a few points. The low order terms of the control law are, at first, analyzed in the framework of linear models. Explicit analytic solutions are derived for this purpose. The effectiveness of high order terms in the control law is then explored by means of a finite element model(FEM), which accounts for high order harmonics. A suitably dimensional analytical Galerkin model is finally derived, to investigate the effectiveness of the proposed control strategy, when applied to a physical model.

Design of a dynamic output feedback law for replacing the output derivatives

  • Son, Young-I.;Shim, Hyung-Bo;Jo, Nam-H.;Kim, Kab-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.337-341
    • /
    • 2003
  • This paper provides a design method for a dynamic output feedback controller which stabilizes a class of linear time invariant systems. We suppose all the states of the given system is not measurable and only the outputs are used to stabilize the system. The systems considered cannot be stabilized by a static output feedback only. In the scheme we first assume that the given system can be stabilized by a state feedback composed of its output, velocity of the output and its higher order derivative terms. Instead of using the derivatives of the output, however, a dynamic system is constructed systematically which replaces the role of the derivative terms. Then, a high-gain output feedback stabilizes the composite system together with the newly constructed system. The performance of the proposed control law is illustrated in the comparative simulation studies of a numerical example with an observer-based control law.

  • PDF

시간지연 시스템을 위한 리아푸노브 이론 기반 상태 피드백 제어기 설계 (Design of Lyapunov Theory based State Feedback Controller for Time-Delay Systems)

  • 조현철;신찬배
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.95-100
    • /
    • 2013
  • This paper presents a new state feedback control approach for communication networks based control systems in which control input and output observation time-delay natures are generally occurred in practice. We first establish a generic state feedback control framework based on well-known linear system theory. A maximum time-delay value which allows critical stability of whole control system are defined to make a positive definite Lyapunov function which is mathematically composed of controlled system states. We analytically derive its control parameters by using a steepest descent optimization method in order to guarantee a stability condition through Lyapunov theory. Computer simulation is numerically carried out for demonstrating reliability of the proposed NCS algorithm and a comparative study is accomplished to prove its superiority for which the traditional control approach for NCS is made use of under same simulation scenarios.

A New Robust Output Feedback Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Matched Disturbance

  • Lee, Jung-Hoon
    • 전기전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.206-213
    • /
    • 2014
  • In this note, a new robust nonlinear output feedback variable structure controller is first systematically and generally designed for the output control of more affine uncertain nonlinear systems with mismatched uncertainties and matched disturbance. A transformed integral output feedback sliding surface with a most simple form is applied in order to remove the reaching phase problems. The closed loop exponential stability and the existence condition of the sliding mode on the integral output feedback sliding surface is investigated with a corresponding output feedback control input in Theorem 1. For practical application the continuous implementation of the control input is made by the modified saturation function. The effectiveness of the proposed controller is verified through a design example and simulation study.

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

자코비안 선형화 및 입-출력 궤환 선형화에 기반한 자기 부상 시스템의 스위칭 제어 (Switching Control of Electromagnetic Levitation System based on Jacobian Linearization and Input-Output Feedback Linearization)

  • 정민길;최호림
    • 전기학회논문지
    • /
    • 제64권4호
    • /
    • pp.578-585
    • /
    • 2015
  • Electromagnetic levitation system(EMLS) is one of the well known nonlinear systems. Often, it is not easy to control an EMLS due to its high nonlinearity. In this paper, we first apply two linearization method(jacobian and input-output feedback linearization) to design two feedback controllers for an EMLS. Then, by observing the advantages of each controller, we design a switching control algorithm which engage two controllers depending on the position of the steel ball in order to achieve the improved performance over each controller. The validity of our switching control approach is verified via both simulation and actual experimental results.

Feedback control design for intelligent structures with closely-spaced eigenvalues

  • Cao, Zongjie;Lei, Zhongxiang
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.903-918
    • /
    • 2014
  • Large space structures may have resonant low eigenvalues and often these appear with closely-spaced natural frequencies. Owing to the coupling among modes with closely-spaced natural frequencies, each eigenvector corresponding to closely-spaced eigenvalues is ill-conditioned that may cause structural instability. The subspace to an invariant subspace corresponding to closely-spaced eigenvalues is well-conditioned, so a method is presented to design the feedback control law of intelligent structures with closely-spaced eigenvalues in this paper. The main steps are as follows: firstly, the system with closely-spaced eigenvalues is transformed into that with repeated eigenvalues by the spectral decomposition method; secondly, the computation for the linear combination of eigenvectors corresponding to repeated eigenvalues is obtained; thirdly, the feedback control law is designed on the basis of the system with repeated eigenvalues; fourthly, the system with closely-spaced eigenvalues is regarded as perturbed system on the basis of the system with repeated eigenvalues; finally, the feedback control law is applied to the original system, the first order perturbations of eigenvalues are discussed when the parameter modifications of the system are introduced. Numerical examples are given to demonstrate the application of the present method.