• Title/Summary/Keyword: First order system dynamics

Search Result 139, Processing Time 0.024 seconds

Exploratory Study on Causality of Expansion Strategy into Emerging Market: Systems Thinking Approach (이머징 마켓 진출 전략의 인과관계에 대한 탐색적 연구: 시스템 사고에 의한 접근)

  • Chung, Chang-Kwon;Lee, Dong-Hyun
    • Korean System Dynamics Review
    • /
    • v.13 no.3
    • /
    • pp.67-98
    • /
    • 2012
  • This study suggests a set of Causal Loop Diagram (CLD) of Causality Mechanism which integrates the matter of characteristics of emerging market and its expansion strategies. In order to make CLD more objective, all causalities are articulated from recent 55 studies (2000~2012) of SSCI Top Journals. This approach is valuable in that it is a first try to draw all the causalities from rigorous literature review regarding emerging market strategy. The 5 CLDs will show and clarify the strategies of how to expand into emerging market for MNCs. In sum, political activity and institutional void is a critical factor related to characteristics of emerging market, and CSV and cultural distance should be considered as a leverage point. For all this study's contribution to clarify the causality of emerging market strategies with abundant literature review, the study has its limits in integrating and testing CLD.

  • PDF

Two-Stage Sliding Mode Controller for Bending Mode Suppression of a Flexible Pointing System (유연성 포인팅 시스템의 진동모드 보상을 위한 2단계 슬라이딩 모드 제어기)

  • 박장현;김경완;이교일;김학성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.971-976
    • /
    • 1996
  • A flexible pointing system mounted on top of a vehicle suffers from performance degradation due to bending vibrations as the vehicle runs on a bump course. In order to improve the pointing performance, the pointing structure's vibrations should be suppressed. In this paper, a nonlinear controller is designed to control the tip position of the pointing system while actively suppressing the vibrations. To cope with high order dynamics and nonlinearities of the plant and hydraulic actuating system, a two-stage sliding mode controller is devised. The desired actuating pressure is obtained in the first stage and then the in put current In the hydraulic servo system is computed to generate the pressure. The simulation results show the effectiveness of this scheme and improvements in pointing accuracy.

  • PDF

Indirect Adaptive Fuzzy Control of Uncertain Nonlinear Systems Using Second Order Sliding Mode (2차슬라이딩모드를 이용한 불확실성을 갖는 비선형시스템의 간접적응 퍼지제어)

  • Park, Won-Seong;Hwang, Yeong-Ho;Yang, Hae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.468-471
    • /
    • 2003
  • In this paper, a second order sliding mode control that combines with a fuzzy adaptation technique is presented for a nonlinear system with unknown dynamics. The chattering effect that is a representative disadvantage of the sliding mode control is avoided by using the second order sliding mode control instead of the first order sliding mode control. The proposed controller is composed of the equivalent control that is approximated by an online adaptation scheme and the hitting control that is used to constrain the states to maintain on the sub-sliding surface and used to guarantee the system robustness. Simulation results are presented to show the effectiveness of the proposed controller.

  • PDF

Design of Adaptive Controller for Factory Automation Facility with Unmodeled Dynamics (자동화설비의 모델 불확실성을 고려한 적응제어기 설계)

  • 이형찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.119-127
    • /
    • 1999
  • In this paper, a robust direct adaptive contrdler is presented in a linear time-invariant. Continuous systems with unmodeded dynamics and bounded disturbance using a rmdified control law and the adaptive law to Compensate for the drawback of ${\sigma}$-modification algorithm. The proposed algorithm is awlied to a plant with unrmdeled dynamics represented as a singular perturbation. Boundness of all signals in overall system is guaranteed with mathematical analysis. simulation results are presented the effectiveness foc the first-order plant even in the presence of unmodelled dynamics or bounded disturbance simulatneousIy.eousIy.

  • PDF

Forecasting Bunker Price Using System Dynamics (시스템 다이내믹스를 활용한 선박 연료유 가격 예측)

  • Choi, Jung-Suk
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.1
    • /
    • pp.75-87
    • /
    • 2017
  • The purpose of this study is to utilize the system dynamics to carry out a medium and long-term forecasting analysis of the bunker price. In order to secure accurate bunker price forecast, a quantitative analysis was established based on the casual loop diagram between various variables that affects bunker price. Based on various configuration variables such as crude oil price which affects crude oil consumption & production, GDP and exchange rate which influences economic changes and freight rate which is decided by supply and demand in shipping and logistic market were used in accordance with System Dynamics to forecast bunker price and then objectivity was verified through MAPEs. Based on the result of this study, bunker price is expected to rise until 2029 compared to 2016 but it will not be near the surge sighted in 2012. This study holds value in two ways. First, it supports shipping companies to efficiently manage its fleet, offering comprehensive bunker price risk management by presenting structural relationship between various variables affecting bunker price. Second, rational result derived from bunker price forecast by utilizing dynamic casual loop between various variables.

A System Dynamics Model for Negotiation strategy Analysis with North Korea (남북관계와 대북협상전략)

  • 곽상만
    • Korean System Dynamics Review
    • /
    • v.1 no.2
    • /
    • pp.5-31
    • /
    • 2000
  • The summit meeting of the South North Korean leaders was a turning point in the relationships between the two countries. It was followed by the Red-Cross Meeting, Minister-Level Meeting, economic agreements, which have increased the relationship more colorful in both quantities and qualities. However, the half-century period for separation was too long to overcome all the problems by only one event. The two countries have quite different social systems; one politically strong person is governing the North, while many interest groups are involved in political decision making processes in the South. In short, it would take a long time to settle down all the problems residing between the two countries. A system dynamics model is developed to describe the long term dynamics of the relations between the South and North Koreas. As a first attempt, the model focuses only on the diplomatic meeting issues between the South and North. The model aggregates diplomatic issues into 5 categories; economic issues, security issues, infrastructure, cultural issues, and past problems. It assumes that there would not be any dramatic changes between the two countries. It is a conceptual model composed of around 200 variables, and should not be used as a forecast tool. However, it captures most of the logics discussed in the papers and conferences concerning the South and North Korea relations. Many sensitivity studies and Monte Carlo simulations have shown that the simulation results matches with mental models of experts; that is the model can be used as a learning tool or as a secondary opinion until the data required by the model is collected. In order to analyze the current situation, five scenarios are simulated and analyzed; the functional approach, the conditional approach, the balanced approach, the circumstantial approach, and the strategic approach. The functional approach represents that the South makes efforts in the area where the possibility of agreement is high for the next 10 years. The conditional approach is a scenario where the South impose all difficult issues as conditions for resolving other diplomatic issues. The balanced approach is resolving the five issues with the same priorities, while the circumstantial approach is resolving issues which seem to be resolved easily. Finally, another optimum approach has been seek using the system dynamics model developed. The optimum strategy (it is named as the strategic approach) was strikingly different from other four approaches. The optimum strategy is so complicated that no one could find it with mental model(or by just insights). Considering that the system dynamic model used to find the optimum is a simplifind (maybe over simplified) version of the reality, it is concluded that a well designed system dynamics model would be of great help to resolving the complicated diplomatic problems in any kind.

  • PDF

A Robust Adaptive Direct Controller for Non-Linear First Order Systems

  • Nguyen, Thi-Hong-Thanh;Cu, Xuan-Thinh;Nguyen, Thi-Minh-Huong;Ha, Thi-Hoan;Nguyen, Dac-Hai;Tran, Van-Truong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.990-993
    • /
    • 2005
  • This paper presents new results on designing a robust adaptive direct controller for a class of non-linear first order systems. The designing method based on the use of dead zone in the parameters' update law. It is shown that the size of the dead zone does not depend on the upper bounds of the disturbances. That means that even if the bounds are large, the tracking error will always converge to a set of the dead zone size. However, in the ideal case, when the exogenous signal functions and the function represents un-modeled dynamics of the systems equal to zero, the proposed controller does nt mean the convergence to zero of the tracking error. Computer simulation results show the effectiveness of the controller in dealing with the stated problems.

  • PDF

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

Tight Path Following PID Controller for a Vehicle with Time Delay (비행체 시간지연을 고려한 정밀경로추종 PID 제어기법)

  • Rhee, Ihn-Seok;Park, Sang-Hyuk;Lee, Kyoung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.618-626
    • /
    • 2011
  • In order to complete missions in a complicated terrain or highly dangerous area, an unmanned aerial vehicle(UAV) needs a fine controller to precisely follow the desired path. A PID controller used for the path following feeds forward path curvature information to the control input to improve the path following performance. High gain for PID controller is necessary to follow path tightly. However the high gain could cause instability or performance degradation when the vehicle has slow dynamics. We present PID controller design method which considers response delay of vehicle as well as path curvature. In order to obtain path curvature the desired path is described as a 3rd order polynomial by applying cubic spline interpolation. We apply the proposed controller to the path following of a UAV which is operated in high altitude and has very slow lateral dynamics. The lateral dynamics are modelled as a first order delayed system in the controller design. Nonlinear simulation shows the UAV with proposed controller follows an arbitrary path very tightly.

SIMULATION OF STARTING PROCESS OF DIESEL ENGINE UNDER COLD CONDITIONS

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.289-298
    • /
    • 2007
  • A nonlinear dynamic simulation model from cranking to idle speed is developed to optimize the cold start process of a diesel engine. Physically-based first order nonlinear differential equations and some algebraic equations describing engine dynamics and starter motor dynamics are used to model the performance of cold starting process which is very complex and involves many components including the cold start aiding method. These equations are solved using numerical schemes to describe the starting process of a diesel engine and to study the effects of cold starting parameters. The validity of this model is examined by a cold start test at $-20^{\circ}C$. Using the developed model the effects of the important starting variables on the cold starting processes were investigated. This model can be served as a tool for designing computer aided control systems that improve cold start performance.