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Abstract: This paper presents new results on designing a robust adaptive direct controller for a class of non-linear first order
systems. The designing method based on the use of dead zone in the parameters' update law. It is shown that the size of the dead
zone does not depend on the upper bounds of the disturbances. That means that even if the bounds are large, the tracking error will

always converge to a set of the dead zone size. However, in the ideal case, when the exogenous signal

functions and the function

represents un-modeled dynamics of the systems equal to zero, the proposed controller does not mean the convergence to zero of the

tracking error.

Computer simulation results show the effectiveness of the controller in dealing with the stated problems.
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1. INTRODUCTION

Concerning nonlinear systems, several results dealing with
robust adaptive control of robot manipulators are now
available in the literature (see [1], [2], [3], [4]). For the general
case, however, few results have been obtained ([5], [6], [7],
[8]), and robustness of those schemes has not been studied.

In this paper, the problem of controlling a first order
nonlinear system subject to bounded input and output
exogenous disturbances and un-modeled dynamics which are
smooth enough is studied. The proposed scheme has been
inspired from previous works (see [9], [5]), but the scheme in
this paper allows us to considerably reduce the size of the dead
zone, i.e. the size of the tracking error residual set.
Furthermore, the a priori upper bounds knowledge on the
system uncertainties and disturbances is significantly reduced,
and is eliminated when the functions in the system equations
are Lepschitz.

The paper is organized as follows: in the next section, the
class of nonlinear plants to be studied and the structure of the
controller are presented. In section 3, we propose three
different robust adaptive control laws and we discuss their
properties. In section 4, a numerical example simulated is
presented. Finally, some conclusions are given in the last
section.

2. PROBLEM STATEMENT AND ROBUST
CONTROLLER STRUCTURE DESIGN

Consider the class of nonlinear systems:

x'==D" f(x)=bu +w,(t)+g(x)
X=x+w,(t)

M
@

, where u, x and R denote the input, state and measured state,
respectively; D € R? and b € R are unknown parameters;
f(x) € RP is a known vector function and g(x) is an unknown
scalar function which represents un-modeled dynamics.

Assume that the exogenous signal w(t), wy(t) as well as
f(x) and g(x) have standard smoothness and boundedness
properties so that the existence of solutions for the ordinary
differential equations involved in the remaining of the paper is
guaranteed [10].
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The aim of the control is to make plant (1) - (2)
asymptotically match a linear first order reference model of
the form:

x'=ax + r (3)

m m 7 m

, where r€ R is the reference signal and a,,< 0. From (1)
and (2) we have:

X =x"+wi(t)=-D" f(X)+

DTAf(x,wz)—bu+w;+wl+g(x) @
, where
Af (x,w,) =1 (x)— f(x) 5

is a measure of the sensitivity of the nominal model
(g(x)=w;=w,=0) with respect to the output noise w(t).
Now, from (3) and (4) the error equation can be derived:

_ — w
e'=x"-x/ =ame+b[—DTf—u+?2+

w1 ©
—'+EDTAf(x,w2)]
— a D' 1
DT =|— = —
[b b ’b:| @
, where
=% £ (®).7] ®)

Assumption 1: b is unknown but its sign is known. We will
consider b>0 in the fest of the paper without loss of generality.

Assumption 2: Suppose that for a suitable unknown
parameter wy; and a known continuous-time function h( x ) we
have

SI 0w+ DA (xow,) + ()| o
<w, h(x)

, where wyy, h(x) > 0.
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Note that e and f* are measurable and therefore available

for control purpose. Now, the following control law is
proposed:

nyo o elelh(¥) .

u=-D f(X)+——w, (10)
£,(e)

, where:

De R denotes an estimate for the unknown parameter
vector in (7).
£,(e) is a suitable function of the tracking error and W,,

is an auxiliary parameter estimate. Both will be specified later.
To show the stability of the closed loop system (1), (10) we
choose the following Lyapunov positive definite function:

1 1, ~.~ ~
V(t)=—e’+=b(D'D+w,, 11)
2 2
where:
D=D-D and vNVM = v'T/M —Ww,, are parameter errors.

Taking derivative of V along the trajectory of the closed
loop system combined with (6) and (10) then in conjunction
with (9) we have:

Vi) <a, e’ + b{—i—‘(:)‘h()?)WM n )

le|w,, A(x)} +bD™ (¢f + D) +biw, W',

Since D and wy, are unknown but constant parameters we

have D’=D"and W’ =W/, Now let us choose:

e .
v ‘e‘ - h(x) lf‘e‘ g 03
0 if‘e‘SE]
e —ef if‘e‘Z&‘] (14)
0 ifld<e,

, where €, specifies the dead zone size. From (13), (14), (12)
we get:

V'<a,e* +blew,[1- < ) forlze, (15
g,(e)
If furthermore € (e) is chosen such that:
e[ 2[e, ()] " V|d2¢, (16)
, wWe obtain:
V'<a,e’ <a,E’ forld=e, W)

So V(t) decreases until ‘e‘ reaches the bound of the dead
zone, 1. € ‘e‘ =g, while assuming bounded initial conditions

one,Dand w,, .
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To conclude boundedness of e, D and w,, we follow the
ideas in [5] and [9].
LetQ, =(t/|<g,) and Q,=(t/|d>¢). For 7€ Q,,

D and W, are constant. Assume that for
t=toe Q,,le(t, )‘ =¢,, i. e the trajectory lies on the boundary
of Q.

Assume also that ‘e‘ leans €, at t,, that there exists t;>t,
such that t, Q,- First note that the length of the interval
(t5,t;) must be finite, see equation (17). Therefore, there exists
a time t3>t, such that ‘6(13)‘ =g, Since e’(tz)=€(t,), and V(t)is
strictly decreasing for t € €2, it follows that:

DGt ||* +32 (1) <|| Dt,)* + W2 (1,) (18)

Remark:
Note that inequality (9) in assumption (2) is satisfied if the
following three inequalities hold:

1 ’

;|w2 +w, [Sw,, (19a)
1 ’

;|w2 +w, [Sw,, (19b)
1 _

Zletols wiah () (19¢)

, where wy; 1 = 1, 2, 3) are unknown positive constant and
hi(x) (i = 2,3) are known positive functions. The interest of
the above inequalities is that the exogenous disturbances, the
sensitivity term Af and the un-modeled dynamics can be
treated separately. Moreover, if f and g are globally Lepschitz,

1 _ .
we can set hy( 3 ‘g(x)‘ <w,;;h,(x))=1 and hy(X )=X . In this

case, one sees that no a priori upper bounds knowledge is
required neither in the above equation nor in (9).

3. CHOICE OF THE DEAD ZONE SIZE

In the previous section we have shown that the system (1),
(2) is globally stable with the control law (10), (13) and (14)
provided that the function & (e) is chosen such that (16)
holds. In this section, we present three different choices for

& (e):

g,(e)=¢’and €, =0.In this case, we obtain:

Wi, =le|h(X) (20)
D' =ef 1)
D" f +sgn(e)w,, h(¥) 22)

, where sgn denotes the sign function.

From (20), (21) it follows that the parameters are frozen
when the sliding surface e=0 is reached. This condition can
not met in practice because actual switchers only provide an
approximation of the sign function. If a numerical
implementation is used, round off errors in the tracking errors
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in the tracking error may destroy the information of its sign in
the neighborhood of e=0.

g, (e)= {62 if‘e‘ 2 ¢, ,where € >0 and small enough

The stability (16) is verified and in this case we have:

& Zllelh) if [e|2g

(23)
0 if |el<g

b/: _ef #|e|281 (24)
0 if le|<eg

u = —Df +sat(e/ € )Wwh(X) (25)

, where sat denotes the saturate function [11] (see Figure 1).

sat(e/ €)
A

v

-1

Fig. 1 The Sat function

This function has been used by several authors for
robustness purposes (see [12]). As long as e is outside the
dead zone, the controllers in 3.1, 3.2 are ideal. If ¢ is inside the
dead zone, the parameters in (23), (24) are frozen and the
input in (25) is linear continuous function of the tracking error.
Thus the problems encountered in 3.1 are avoided, provided
that €, designs a “sufficiently large “neighborhood of the
origine = 0.

g,(e)=¢ +a(e’ —¢’) where ae0,e]and £ >0.
Then the stability condition in (16) is verified and (13), (14)
yield:

le|e .

—S————— If |e|2¢,

W, =g +ale’ —¢g") /el (26)
0 if le|<g

A |—ef i >

s g rlele o
0 ifle|<e,

u=D"f+ lele 5w (28)

el +tae’ -¢g)

For a fixed value of &, if, one sees that it approaches 1,

then (e) approaches ¢”. Hence u in (28) to the discontinuous
input defined in (22). But now, I e is inside the dead zone, the
parameters are frozen and the control input is a nonlinear
continuous time function. Thus the problem in-countered in
section 3.1 are again avoided.
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4. SIMULATION EXAMPLE

The simulation results presented in this section were
obtained by using MATLAB with nonlinear control tool box
(NCD) added. Let us consider the following nonlinear system:

100 1
x'=) ———sin(nx)+u+w
Z{ (n+1)° ‘ (29)
X=x+w,
The reference model is x;l =—a,x, +r , where r is
depicted shown in Figure 2.
r
A
a
0 >
» t
T 2T 3T

Fig. 2 Reference signal r

Fora=1,T =8 sec, €= 103, h(X) =1, g(x)=0 we have
got the simulation results in Figure 3.

| lr“i T
;n,'lﬂ,f.]r;h‘.u'J""1“Nﬂ"‘ﬁlﬁlﬁ‘.fﬂl.Uu‘!(] ] —
o o
-gt\“!‘%_'!'ﬁfﬂﬁ*’*‘“‘""ﬁ?ﬁ‘f‘fﬂ'ﬂ'ﬂiﬁ\ﬁ‘_’tﬁ_‘;‘l
e

Fig. 3 Simulation result

5. CONCLUSIONS

In this work, we have presented a robust adaptive direct
controller applied to a class of nonlinear first order systems. It
is based on the use of a dead zone in the parameters update
law. The size of the dead zone in (13) and (14) does not
depend on the upper bounds of the disturbances. It follows that
even If the bounds are large, the tracking error convergence to

a set of size defined €. In spite of this convergence, in the

ideal case when w;=w,=g(x) = 0, the proposed scheme does
not allow one to conclude convergence to zero of the tracking
error. The extension of the results presented in this paper to
systems of dimension greater than one is under currently
research.



ICCAS2005

June 2-5, KINTEX, Gyeonggi-Do, Korea

REFERENCES

[1] Reed, J. S., "Instability analysis and robust control of
robotic manipulator", IEEEj. Of Robot and Automation,
15, 1984.

[2] Ioannou, P.A and K.S. Tsakalis, "A robust direct adaptive
controller. /EEE Trans. OnAut. Control, AC - 31, pp.
1033-1043, 1986.

[3] Lim, K.Y., "Robust adaptive controller design for robot
rigid manipulator systems", IEEEJ. Of robot and
Automation, AC-33,pp. 50-58, 1987.

[4] Kang, HD.M Dawson, F.L Leves and G.J. Vachtsevano,
"A robust adaptive controller for rigid robots", 12" IEEE
Conf. On Decision and Control, Tampa, FL, 1989.

[5] Satry, S.S., "Model reference adaptive control", IMA J of
Mathematical Control and Information, 1, pp. 27-66,
1989.

[6] Knellakopoulos, I.,P.V. Kokotovic and A.S. Morse,
"Adaptive output-feedback control of systems with
output nonlineaeities", Technical report DC-126,
University of Illinois at Urbana-Champaing, 28
September-1 October, 1990.

[7]1 Knellakopoulos, I.,P.V. Kokotovic and A.S. Morse,
"Systematic design of adaptive controllers for feedback
linearizable systems", IEEE Trans. On Aut. Control, 36,
pp. 1241-1253, 1991.

[8] Campion, G. and G. Bastin, "Indirect adaptive state
feedback control of linearly paramiterized nonlinear
systems", [IntJ of Adaptive control and Signal
processing, 4, pp. 345-358, 1990.

[9] Peterson, B. B., "Bounded error adaptive control. Trans”,
On IEEE Automatic Control, AC-27, 1982.

[10] Coddington , E.A and N, levison, Theory of ordinary
differential equations, McGraw hill, New York, 1955.

[11] Astrom K. J. and Wittenmark B., Computer control
systems - theory and design, Prentice Hall, 1997.

[12] Shoureshi, R., "Robust control for manipulators with
uncertain dynamics", Automatica, 26, pp. 353-359, 1990.

993



	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print



