• Title/Summary/Keyword: First order statistic

Search Result 74, Processing Time 0.03 seconds

Likelihood Function of Order Statistic with a Weibull Distribution (와이벌분포를 갖는 순위설계량의 우도함수)

  • Seo Nam-Su
    • Journal of the military operations research society of Korea
    • /
    • v.9 no.2
    • /
    • pp.39-43
    • /
    • 1983
  • In this paper, we derive the likelihood function for the independent random order statistic whose underlying lifetime distribution is a two parameter Weibull form. For this purpose we first discuss the order statistic which represent a characteristic feature of most life and fatigue tests that they give rise to ordered observations. And, we describe the properties of the underlying Weibull model. The derived likelihood function is essential for establishing the statistical life test plans in the case of Weibull distribution using a likelihood ratio method.

  • PDF

Empirical Analysis on Rao-Scott First Order Adjustment for Two Population Homogeneity test Based on Stratified Three-Stage Cluster Sampling with PPS

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.208-213
    • /
    • 2014
  • National-wide and/or large scale sample surveys generally use complex sample design. Traditional Pearson chi-square test is not appropriate for the categorical complex sample data. Rao-Scott suggested an adjustment method for Pearson chi-square test, which uses the average of eigenvalues of design matrix of cell probabilities. This study is to compare the efficiency of Rao-Scott first order adjusted test to Wald test for homogeneity between two populations using 2009 Gyeongnam regional education offices's customer satisfaction survey (2009 GREOCSS) data. The 2009 GREOCSS data were collected based on stratified three-stage cluster sampling with probability proportional to size. The empirical results show that the Rao-Scott adjusted test statistic using only the variances of cell probabilities is very close to the Wald test statistic, which uses the covariance matrix of cell probabilities, under the 2009 GREOCSS data based. However it is necessary to be cautious to use the Rao-Scott first order adjusted test statistic in the place of Wald test because its efficiency is decreasing as the relative variance of eigenvalues of the design matrix of cell probabilities is increasing, specially more when the number of degrees of freedom is small.

Some Characterization Results Based on Dynamic Survival and Failure Entropies

  • Abbasnejad, Maliheh
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.787-798
    • /
    • 2011
  • In this paper, we develop some characterization results in terms of survival entropy of the first order statistic. In addition, we generalize the cumulative entropy recently proposed by Di Crescenzo and Logobardi (2009) to a new measure of information (called the failure entropy) and study some properties of it and its dynamic version. Furthermore, power distribution is characterized based on dynamic failure entropy.

Generalized Durbin-Watson Statistics in the Nonstationary Seasonal Time Series Model

  • Cho, Sin-Sup;Kim, Byung-Soo;Park, Young J.
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.365-382
    • /
    • 1997
  • In this paper we study the behaviors of the generalized Durbin-Watson (DW) statistics when the nonstationary seasonal time series regression model is misspecified. It is observed that when the series is seasonally integrated the generalized DW statistic for the seasonal period order autocorrelation converges in probability to zero while teh generalized DW statistic for the first order autocorrelation has nondegenerate asymptotic distribution. When the series is regularly and seasonally integrated the generalized DW for the first order autocorrelation still converges in probability to zero.

  • PDF

Applying 3D U-statistic method for modeling the iron mineralization in Baghak mine, central section of Sangan iron mines

  • Ghannadpour, Seyyed Saeed;Hezarkhani, Ardeshir;Golmohammadi, Abbas
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.262-272
    • /
    • 2018
  • The U-statistic method is one of the most important structural methods to separate the anomaly from background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, 3D U-statistic method has been applied for the first time through the three-dimensional (3D) modeling of an ore deposit. In order to achieve this purpose, 3D U-statistic is applied on the data (Fe grade) resulted from the drilling network in Baghak mine, central part of the Sangan iron mines (in Khorassan Razavi Province, Iran). Afterward, results from applying 3D U-statistic method are used for 3D modeling of the iron mineralization. Results show that the anomalous values are well separated from background so that the determined samples as anomalous are not dispersed and according to their positioning, denser areas of anomalous samples could be considered as anomaly areas. And also, final results (3D model of iron mineralization) show that output model using this method is compatible with designed model for mining operation. Moreover, seen that U-statistic method in addition for separating anomaly from background, could be very efficient for the 3D modeling of different ore type.

A Simple Nonparametric Test of Complete Independence

  • Park, Cheol-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.411-416
    • /
    • 1998
  • A simple nonparametric test of complete or total independence is suggested for continuous multivariate distributions. This procedure first discretizes the original variables based on their order statistics, and then tests the hypothesis of complete independence for the resulting contingency table. Under the hypothesis of independence, the chi-squared test statistic has an asymptotic chi-squared distribution. We present a simulation study to illustrate the accuracy in finite samples of the limiting distribution of the test statistic. We compare our method to another nonparametric test of complete independence via a simulation study. Finally, we apply our method to the residuals from a real data set.

  • PDF

Polynomially Adjusted Normal Approximation to the Null Distribution of Ansari-Bradley Statistic

  • Ha, Hyung-Tae;Yang, Wan-Youn
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1161-1168
    • /
    • 2011
  • The approximation for the distribution functions of nonparametric test statistics is a significant step in statistical inference. A rank sum test for dispersions proposed by Ansari and Bradley (1960), which is widely used to distinguish the variation between two populations, has been considered as one of the most popular nonparametric statistics. In this paper, the statistical tables for the distribution of the nonparametric Ansari-Bradley statistic is produced by use of polynomially adjusted normal approximation as a semi parametric density approximation technique. Polynomial adjustment can significantly improve approximation precision from normal approximation. The normal-polynomial density approximation for Ansari-Bradley statistic under finite sample sizes is utilized to provide the statistical table for various combination of its sample sizes. In order to find the optimal degree of polynomial adjustment of the proposed technique, the sum of squared probability mass function(PMF) difference between the exact distribution and its approximant is measured. It was observed that the approximation utilizing only two more moments of Ansari-Bradley statistic (in addition to the first two moments for normal approximation provide) more accurate approximations for various combinations of parameters. For instance, four degree polynomially adjusted normal approximant is about 117 times more accurate than normal approximation with respect to the sum of the squared PMF difference.

Graphical Estimation of the Parameters of the Stable Laws

  • Paulson, Albert-S.;Won, Hyung-Gyoo
    • Management Science and Financial Engineering
    • /
    • v.2 no.1
    • /
    • pp.103-122
    • /
    • 1996
  • This paper presents an easily used graphical procedure for simultaneous estimation of the index, skewness, scale, and location parameters of the stable laws. First, the index $\alpha$ and skewness $\beta$ are estimated through the joint use of a tail length statistic $\widetilde{K_t}$ and a skewness statistic $\widetilde{K_s}$, both of which are functions of order statistics. Next, the function of order statistics needed for estimation of scale $\sigma$ and location $\mu$ are determined from a nomogram indexed on the estimates of $\alpha$ and $\beta$. Some applications and examples are provided.

  • PDF

Testing the Randomness of the Coefficients In First Order Autoregressive Processes

  • Park, Sangwoo;Lee, Sangyeol;Sun Y. Hwang
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.2
    • /
    • pp.189-195
    • /
    • 1998
  • In this paper, we are concerned with the problem of testing the randomness of the coefficients in a first order autoregressive model. A consistent test based on prediction error is suggested. It is shown that under the null hypothesis, the test statistic is asymptotically normal.

  • PDF

Test of Homogeneity for Intermittent Panel AR(1) Processes and Application (간헐적인 패널 1차 자기회귀과정들의 동질성 검정과 적용)

  • Lee, Sung Duck;Kim, Sun Woo;Jo, Na Rae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1163-1170
    • /
    • 2014
  • The concepts and structure of intermittent panel time series data are introduced. We suggest a Wald test statistic for the test of homogeneity for intermittent panel first order autoregressive model and its limit distribution is derived. We consider the fitting the model with pooling data using sample mean at the time point if homogeneity for intermittent panel AR(1) is satisfied. We performed simulations to examine the limit distribution of the homogeneity test statistic for intermittent panel AR(1). In application, we fit the intermittent panel AR(1) for panel Mumps data and investigate the test of homogeneity.