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Abstract
In this paper, we develop some characterization results in terms of survival entropy of the first order statistic.

In addition, we generalize the cumulative entropy recently proposed by Di Crescenzo and Logobardi (2009) to a
new measure of information (called the failure entropy) and study some properties of it and its dynamic version.
Furthermore, power distribution is characterized based on dynamic failure entropy.
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1. Introduction

Let X be a non-negative absolutely continuous random variable with probability density function f ,
distribution function F and survival function F̄ = 1− F. The random variable X may be thought of as
the random lifetime of a system or of a component. The basic measure of the uncertainty contained
in random variable X is the Shannon entropy H(X) = −

∫ +∞
0 f (x) log f (x)dx (Shannon, 1948). A

generalization of H(X) has been proposed by Rényi (1961) as

Hα(X) = − 1
α − 1

log
∫ +∞

−∞
f α(x)dx, α > 0 (α , 1).

If a unit is known to have survived up to an age t, then H(X) and Hα(X) is no longer useful in measuring
the uncertainty about the remaining lifetime of the unit. Accordingly, Ebrahimi (1996) introduced the
entropy of the residual lifetime Xt = [X − t|X > t] as a dynamic measure of uncertainty.

Rao et al. (2004) defined a new measure of uncertainty based on the survival function of a random
variable X, as

E(X) = −
∫ +∞

0
F̄(x) log F̄(x)dx,

and called it cumulative residual entropy(CRE). This measure can be applied in reliability and image
alignment. CRE is always non-negative; however H(X) and Hα(X) are non-negative for discrete
random variables and can be negative in a continuous case. For more properties of CRE, one can refer
to Wang and Vemuri (2007) and Rao (2005). Asadi and Zohrevand (2007) proposed a dynamic form
of CRE.
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Zografos and Nadarajah (2005) introduced the survival entropy(SE) of order α as

Eα(X) = − 1
α − 1

log
∫ +∞

0
F̄α(x)dx. (1.1)

SE parallels Renyi entropy of order α. Abbasnejad et al. (2010) proposed dynamic survival en-
tropy(DSE) and showed how DSE are connected with the mean residual life function.

Di Crescenzo and Longobardi (2009) introduced a new measure of information similar to CRE,
called it cumulative entropy(CE). CE is defined as

CE(X) = −
∫ +∞

0
F(x) log F(x)dx.

Further, they proposed a dynamic version of it as CE(X, t) = −
∫ t

0 F(x)/F(t) log F̄(x)/F̄(t)dx, which is
the CE of tX = [t − X|X ≤ t].

In analogy with Di Crescenzo and Longobardi (2009) and Zografos and Nadarajah (2005), we
introduce the failure entropy of order α (FE) as

FEα(X) = − 1
α − 1

log
∫ +∞

0
Fα(x)dx.

Let X1, . . . , Xn are independent and identically distributed(iid) observations from cdf F(x) and pdf
f (x). The order statistics is defined by the arrangement of X1, . . . , Xn from the smallest to the largest,
denoted as X1:n ≤ X2:n ≤ · · · ≤ Xn:n. These statistics have been used in a wide range of problems, that
include robust statistical estimation, characterization of probability distributions and goodness of fit
tests, entropy estimation, analysis of censored data and reliability theory; for more details see Arnold
et al. (1992), David and Nagaraja (2003), and references therein.

The rest of the paper is organized as follows. Section 2 contains some characterization results
based on SE and DSE of first order statistic X1:n. In Section 3, we introduce the failure entropy and
the dynamic failure entropy(DFE) and show that DFE uniquely determines the parent distribution. In
Section 4, the power distribution is characterized in terms of DFE.

2. Characterization Based on SE and DSE of First Order Statistic

This section characterizes exponential and Weibull distributions in terms of SE and DSE of first order
statistic.

Let X1:n be the first order statistic in a random sample X1, . . . , Xn from a non-negative absolutely
continuous random variable X with pdf f , cdf F and survival function F̄, then the SE of X1:n is given
by

Eα(X1:n) = − 1
α − 1

log
∫ +∞

0
F̄α

1:n(x)dx = − 1
α − 1

log
∫ +∞

0
F̄nα(x)dx. (2.1)

The next lemma compares SE of X and X1:n.

Lemma 1. The following statements hold:

(a) Eα(X1:n) =
nα − 1
α − 1

Enα(X).
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(b) Eα(X1:n) ≥ (≤)Eα(X), for α > 1 (0 < α < 1).

Example 1. Suppose X has a pareto distribution with cdf F(x) = 1 − (β/x)θ, x ≥ β, θ > 0, then, we
obtain Eα(X) = −1/(α − 1) log[β/(θα − 1)], α > 1/θ and Eα(X1:n) = −1/(α − 1) log[β/(nθα − 1)]. So
we have Eα(X1:n) ≥ (≤)Eα(X), for α > 1 (0 < α < 1). Let ∆ = Eα(X1:n) − Eα(X) = 1/(α − 1) log[(nθα
−1)/(θα − 1)], which is an increasing function of n for α > max{1, 1/θ}.

Note that using u = F̄(x), we have

Eα(X1:n) = − 1
α − 1

log
∫ 1

0

unα

f
(
F−1(1 − u)

)du. (2.2)

Example 2. If X has a Weibull distribution with cdf F(x) = 1− e−θxβ , x > 0, β, θ > 0, then, we have
Eα(X) = −1/(α − 1) log[Γ(1/β)/(θ1/βα1/ββ)] and Eα(X1:n) = −1/(α − 1) log[Γ(1/β)/(θ1/βn1/βα1/ββ)].
Here ∆ = Eα(X1:n) − Eα(X) = (log n)/{β(α − 1)}, which is an increasing (decreasing) function of n for
α > 1 (0 < α < 1).

If α > 1, then by Lemma 1, Eα(X) is a lower bound for Eα(X1:n). Another lower bound for Eα(X1:n)
is given in Abbasnejad et al. (2010) as Eα(X1:n) ≥ −1/(α − 1) log E(X1:n) = −1/(α − 1) log[Γ( 1/β)/
(θ1/βn1/ββ)]. The difference between two lower bounds is Eα(X) + 1/(α − 1) log E(X1:n) = 1/{β(α −
1)} logα/n < 0, ∀ 1 < α < n. So, for 1 < α < n, the lower bound of Abbasnejad et al. (2010) is
sharper.

Two different distributions may have equal survival entropy and a distribution cannot be deter-
mined by its SE. In subsequent theorems, we study conditions under which the SE of the first order
statistic can uniquely determines the parent distribution.

We need following lemma, which is known as Müntz-Szasz Theorem (See, Kamps, 1998), in the
following theorems.

Lemma 2. For any increasing sequence of positive integers {n j, j ≥ 1}, the sequence of polynomials
{xn j } is complete on L(0, 1), if and only if,

∑∞
j=1 n−1

j = +∞.

In the sequel we assume that {n j, j ≥ 1} is a strictly increasing sequence of positive integers.

Theorem 1. Let X and Y be two random variables with absolutely continuous cdfs F(x) and G(y),
pdfs f (x) and g(y), respectively. Then F and G belong to the same family of distributions, but for a
change in location and scale if

Eα(X1:n) − Eα(X) = Eα(Y1:n) − Eα(Y), (2.3)

for all n = n j, j ≥ 1, such that
∑∞

j=1 n−1
j = +∞.

Proof: The necessity is obvious. For the sufficiency part, using u = F̄α(x) in (1.1) and (2.1), we have

Eα(X1:n) − Eα(X) = − 1
α − 1

log

∫ 1
0

[
un+ 1

α−1/ f
(
F−1

(
1 − u

1
α

))]
du∫ 1

0

[
u

1
α
/

f
(
F−1

(
1 − u

1
α

))]
du

.

If (2.3) holds, then we get∫ 1
0

[
un+ 1

α−1/ f
(
F−1

(
1 − u

1
α

))]
du∫ 1

0

[
u

1
α
/

f
(
F−1

(
1 − u

1
α

))]
du

=

∫ 1
0

[
un+ 1

α−1/g (
G−1

(
1 − u

1
α

))]
du∫ 1

0

[
u

1
α
/
g
(
G−1

(
1 − u

1
α

))]
du

. (2.4)
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Let c =
∫ 1

0 [u1/α/g(G−1(1 − u1/α))]du
/∫ 1

0 [u1/α/ f (F−1(1 − u1/α))]du, then (2.4) can be expressed as∫ 1

0
un+ 1

α−1

 1

f
(
F−1

(
1 − u

1
α

)) − 1

cg
(
G−1

(
1 − u

1
α

))  du = 0. (2.5)

If (2.5) holds for n = n j, j ≥ 1, such that
∑∞

j=1 n−1
j = +∞, then from Lemma 2 we conclude that

f (F−1(w)) = cg(G−1(w)) for all 0 < w < 1. Since dF−1(w)/dw = 1/ f (F−1(w)), it then follows that
F−1(w) = cG−1(w) + d. This means F and G belong to the same family of distributions, but for a
change in location and scale. �

By Theorem 1, we get the following result that characterizes the exponential distribution.

Corollary 1. The family of exponential distribution with survival function F̄(x) = e−a(θ)x, x > 0 for
some positive function a(θ), can be characterized by the condition

Eα(X1:n) − Eα(X) =
1

α − 1
log n,

for all n = n j, j ≥ 1, such that
∑∞

j=1 n−1
j = +∞.

Similar result is obtained by Baratpour et al. (2008) based on Renyi entropy.

Theorem 2. Let X and Y be two random variables with common support [0,+∞) and absolutely
continuous cdfs F(x) and G(y), pdfs f (x) and g(y), respectively. Then F and G belong to the same
family of distributions, but for a change in scale if

e−(α−1)Eα(X1:n)

E(X1:n)
=

e−(α−1)Eα(Y1:n)

E(Y1:n)
,

for all n = n j, j ≥ 1, such that
∑∞

j=1 n−1
j = +∞.

Proof: The necessity is trivial. For the sufficiency part, first note that, we can write

E(X1:n) =
∫ +∞

0
F̄1:n(x)dx =

∫ +∞

0
F̄n(x)dx =

∫ 1

0

un

f
(
F−1(1 − u)

)du,

where the last equality is obtained using u = F̄(x). By (2.2) we have

e−(α−1)Eα(X1:n)

E(X1:n)
=

∫ 1
0

[
unα/ f

(
F−1(1 − u)

)]
du∫ 1

0

[
un/ f

(
F−1(1 − u)

)]
du

. (2.6)

If (2.6) holds, then we get∫ 1
0

[
unα/ f

(
F−1(1 − u)

)]
du∫ 1

0

[
un/ f

(
F−1(1 − u)

)]
du
=

∫ 1
0

[
unα/g (

G−1(1 − u)
)]

du∫ 1
0

[
un/g (

G−1(1 − u)
)]

du
. (2.7)

Let c =
∫ 1

0 [un/g(G−1(1 − u))]du
/∫ 1

0 [un/ f (F−1(1 − u))]du, then (2.7) can be expressed as∫ 1

0
unα

[
1

f
(
F−1(1 − u)

) − 1
cg

(
G−1(1 − u)

) ] du = 0. (2.8)
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If (2.8) holds for n = n j, j ≥ 1, such that
∑∞

j=1 n−1
j = +∞, then from Lemma 2 we have f (F−1(w)) =

cg(G−1(w)) for all 0 < w < 1, and similar to Theorem 1, it follows that F−1(w) = cG−1(w) + d. Since
X and Y have a common support [0,+∞), we can conclude that d = 0, which means F and G belong
to the same family of distributions, but for a change in scale. �

Corollary 2. The family of Weibull distribution with survival function F̄(x) = e−θxβ , x > 0, θ, β > 0,
can be characterized by the condition e−(α−1)Eα(X1:n)/E(X1:n) = α−1/β. Note that, for Weibull distribu-
tion e−(α−1)Eα(X1:n)/E(X1:n) = e−(α−1)Eα(X)/E(X) is constant and does not depend on n.

Baratpour (2010) showed that F belongs to Weibull family if CRE(X1:n)/E(X1:n) is constant and does
not depend on n. In addition, Gertsbakh and Kagan (1999) and Zheng (2001) obtained related charac-
terizations of the Weibull family based on the properties of the Fisher information under types I and
II censoring.

In the following theorem, we show that the parent distribution can be characterized by DSE of
X1:n.

Theorem 3. Under the assumptions of Theorem 1, F and G belong to the same location family of
distributions if

Eα(X1:n) = Eα(Y1:n), ∀ n j ≥ 1,

such that
∑∞

j=1 n−1
j = +∞.

Proof: The necessity is trivial. For the sufficiency part, if for two cdfs F and G, Eα(X1:n) = Eα(Y1:n),
we have ∫ 1

0

unα

f
(
F−1(1 − u)

)du =
∫ 1

0

unα

f
(
F−1(1 − u)

)du,

or equivalently, ∫ 1

0
unα

[
1

f
(
F−1(1 − u)

) − 1
g
(
G−1(1 − u)

) ] du = 0. (2.9)

If (2.9) holds for n = n j, j ≥ 1, such that
∑∞

j=1 n−1
j = +∞, then from Lemma 2 we conclude that

f (F−1(w)) = g(G−1(w)) for all 0 < w < 1, and the result follows similar to Theorem 1. �

Let X be the life time of a component under the condition that the component has survived to age t.
In such a case, we need to compute the entropy of the residual lifetime Xt = [X − t|X > t]. Various
dynamic information measures have been proposed to describe the uncertainty of Xt. Ebrahimi (1996)
considered the Shannon entropy of Xt. Asadi et al. (2005), Abraham and Sankaran (2005) studied
the dynamic Renyi entropy of order α and its properties. Asadi and Zohrevand (2007) proposed the
dynamic cumulative residual entropy. Abbasnejad et al. (2010) introduced the dynamic survival
entropy of order α. This is defined as

Eα(X, t) = − 1
α − 1

log
∫ +∞

t

[
F̄(x)
F̄(t)

]α
dx.

It is obvious that Eα(X, t) = Eα(X), for t = 0.
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In the following theorem, we show that the equality of the dynamic survival entropy in first order
statistics can determine uniquely the parent distribution.

Theorem 4. Under the assumptions of Theorem 1, F and G belong to the same family of distribu-
tions, but for a change in location and scale if

Eα(X1:n, t) = Eα(Y1:n, t), ∀ n j ≥ 1, (2.10)

such that
∑∞

j=1 n−1
j = +∞.

Proof: The necessity is trivial. For the sufficiency part, if (2.10) holds, then by Theorem 3 we can
conclude that X|X > t and Y |Y > t have a same distribution but for a change in location parameter.
This means ft(x) = gt(x + c), where ft and gt are pdfs of X|X > t and Y |Y > t, respectively. Thus,
f (x)/F̄(t) = g(x + c)/Ḡ(t) or equivalently, f (x) = F̄(t)/Ḡ(t) g(x + c), which means F and G belong to
the same family of distributions, but for a change in location and scale. �

Remark 1. In a series system consisting of n components with the lifetimes X1, . . . , Xn, which
X1, . . . , Xn are continuous and iid random variables, X1:n describes the lifetime of the system. Thus,
under the assumptions of Theorems 3 and 4, two series system A and B have the same lifetime
distributions, but for a change in location and scale if one of the following statements holds:

(a) Eα(X1:n) = Eα(Y1:n),

(b) Eα(X1:n, t) = Eα(Y1:n, t).

3. Failure Entropy of Order ααα

In this section, we propose an information measure that is analogous to Eα(X). For a non-negative
random variable X, we define the failure entropy of order α as

FEα(X) = − 1
α − 1

log
∫ +∞

0
Fα(x)dx, ∀ α > 0 (α , 1). (3.1)

Example 3.

(a) Suppose X has a uniform distribution on (a, b). Then, FEα(X) = −1/(α − 1) log{(b − a)/(α + 1)}.
(b) Let X have a pareto distribution with cdf F(x) = 1 − (β/x)θ, x ≥ β, θ > 0, then, FEα(X) =
−1/(α − 1) log[Γ(α + 1)Γ(2 + 1/θ)/Γ(α + 1/θ) · θ/β].

In the following lemma, we show that FEα is a shift-independent measure.

Lemma 3. If Y = aX + b, with a > 0 and b ≥ 0, then

FEα(Y) = − 1
α − 1

log a + Eα(X).

Proof: The result follows by noting that FaX+b(x) = FX((x − b)/a), x ∈ R and (3.1). �

The two dimensional version of (3.1) can be defined as

FEα(X,Y) = − 1
α − 1

log
∫ +∞

0

∫ +∞

0
Fα(x, y)dxdy, ∀ α > 0 (α , 1).
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It is easily follows that if X and Y are independent, then

FEα(X,Y) = FEα(X) + FEα(Y).

Note that the above property holds for Shannon, Renyi and survival entropy.
It is reasonable to presume that in many situations uncertainty is related to the past. In such

situations, one usually works with the conditional random variable tX = [t−X|X ≤ t] which is usually
known as inactivity time (see the Nanda et al., 2003). For instance, if at time t, a system which is not
monitored continuously, is found to be failed; then the uncertainty of the system life relies on the past.
Based on this idea, various measures have been proposed in the literature. For more details, one can
refer to Di Crescenzo and Longobardi (2002, 2004), Nanda and Paul (2006) and Di Crescenzo and
Longobardi (2009).

In analogy with (3.1), we define the dynamic failure entropy of order α that computes the uncer-
tainty related to the past. DFE is defined as

FEα(X, t) = − 1
α − 1

log
∫ t

0

[
F(x)
F(t)

]α
dx, ∀ α > 0 (α , 1), (3.2)

which is the FE of tX = [t − X|X ≤ t].

Lemma 4. If Y = aX + b, with a > 0 and b ≥ 0, then

FEα(Y, t) = − 1
α − 1

log a + FEα
(
X,

t − b
a

)
.

Example 4.

(a) Suppose X has a uniform distribution on (a, b). Then, FEα(X, t) = −1/(α − 1) log{(t− a)/(α+ 1)}.
(b) Let X have a pareto distribution, then, FEα(X, t) = α/(α − 1) log[1− (β/t)θ]− 1/(α − 1) log B(α+

1, 1/θ + 2, 1 − F(t)), where the B( · , · , · ) is the incomplete beta function.

Theorem 5. Let X and Y be two absolutely continuous random variables such that X
DS E
≤ Y, that is

FEα(X, t) ≤ FEα(Y, t), for all t ≥ 0. Define Z1 = a1X + b1 and Z2 = a2Y + b2, where a1, a2 > 0 and

b1, b2 ≥ 0 are constants. If a1 ≥ a2 and b1 ≥ b2, then Z1
DS E
≤ Z2, ∀ α > 1, if FEα(X, t) or FEα(Y, t) is

increasing in t > b1.

Proof: Since (t − b1)/a1 ≤ (t − b2)/a2 and FEα(X, t) is increasing in t, we have

FEα
(
X,

t − b1

a1

)
≤ FEα

(
X,

t − b2

a2

)
≤ FEα

(
Y,

t − b2

a2

)
.

So for α > 1

FEα(Z1, t) = FEα
(
X,

t − b1

a1

)
− log a1

α − 1
≤ FEα(Z2, t) = FEα

(
Y,

t − b2

a2

)
− log a2

α − 1
.

�
Corollary 3. Let X and Y be two absolutely continuous random variables such that X

DS E
≤ Y. Define

X1 = aX + b and Y1 = aY + b, where a > 0 and b ≥ 0 are constants. Then for t > b, X1
DS E
≤ Y1,

∀α > 0 (α , 1).
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Definition 1. A distribution function F(x) is said to have decreasing (increasing) dynamic Failure
entropy (DDFE (IDFE)) if FEα(X, t) is decreasing (increasing) in t ≥ 0.

In the next theorem we give sufficient conditions for a function ϕ(X) of a random variable X to have
more (less) DFE than X itself.

Theorem 6.

(a) If ϕ is a non-negative function on [0,+∞) with ϕ′(x) ≥ 1 and X is IDFE, then for α > 1,
FEα(ϕ(X), t) ≤ FEα(X, t).

(b) If ϕ is a non-negative increasing function on [0,+∞) with ϕ(0) = 0 and ϕ′(x) ≤ 1 and X is DDFE,
then for α > 1, FEα(ϕ(X), t) ≥ FEα(X, t).

Proof:

(a) The past failure entropy of ϕ(X) is

FEα(ϕ(X), t) = − 1
α − 1

log
∫ t

0

[
Fϕ(x)
Fϕ(t)

]α
dx,

where Fϕ is the distribution function of ϕ(X). Using u = ϕ−1(x) we have

FEα(ϕ(X), t) = − 1
α − 1

log
∫ ϕ−1(t)

0

[
F(u)

F(ϕ−1(t))

]α
ϕ′(u)du. (3.3)

Thus, we have for α > 1, FEα(ϕ(X), t) ≤ FEα(X, ϕ−1(t)). Also, note that if ϕ′(x) ≥ 1, x ≥ 0, then
ϕ(x) − ϕ(0) ≥ x. So x ≥ ϕ−1(x) for non-negative increasing ϕ. Thus the result follows.

(b) The proof is similar to that of (a). �

In many cases of practical interest is important to know whether the DDFE (IDFE) property of X is
inherited by a transformation of X. The next theorem provides a partial answer.

Theorem 7.

(a) If X is IDFE, and if ϕ is monotone and convex (concave), then ϕ(X) is also IDFE for α > 1 (0 <
α < 1).

(b) If X is DDFE, and if ϕ is monotone and concave (convex), then ϕ(X) is also DDFE for α > 1 (0 <
α < 1).

Proof:

(a) Differentiating both sides of (3.3) we get

∂

∂t
FEα(ϕ(X), t) =

α

α − 1
· 1
ϕ′(ϕ−1(t))

· f (ϕ−1(t))
F(ϕ−1(t))

− 1
α − 1

· 1∫ ϕ−1(t)
0

[
F(u)

F(ϕ−1(t))

]α
ϕ′(u)du

=
α

α − 1
· r(ϕ−1(t))
ϕ′(ϕ−1(t))

− 1
α − 1

· 1∫ ϕ−1(t)
0

[
F(u)

F(ϕ−1(t))

]α
ϕ′(u)du

.
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Let α > 1. ϕ′(x) is an increasing function because ϕ(x) is a convex function. So ϕ′(u) ≤ ϕ′(ϕ−1(t)),
∀ 0 < u < ϕ−1(t) and hence,

∂

∂t
FEα(ϕ(X), t) ≥ α

α − 1
· r(ϕ−1(t))
ϕ′(ϕ−1(t))

− 1
α − 1

· 1∫ ϕ−1(t)
0

[
F(u)

F(ϕ−1(t))

]α
ϕ′(ϕ−1(t))du

=
∂

∂t
FEα(X, ϕ−1(t)) ≥ 0.

A similar result follows for 0 < α < 1.

(b) The proof is similar to that of (a). �

Example 5. Let X have the uniform distribution on (0, 1). By Example 4, it is obvious that X
is DDFE (IDFE) for α > 1 (0 < α < 1). If Y = ϕ1(X) = −(log X)/θ, (θ > 0), then Y has the
exponential distribution with mean 1/θ. The decreasing function ϕ1(x) is convex and hence, expo-
nential distribution is IDFE (DDFE) for α > 1 (0 < α < 1). Let Z = Y1/β (β > 0). Then Z is
distributed as Weibull distribution with survival function Ḡ(t) = exp(−θtβ) t > 0. The increasing
function ϕ2(y) = y1/β y > 0, β > 0 is convex (concave) if 0 < β < 1 (β > 1). By Theorem 7, it follows
that, Weibull distribution is IDFE for α > 1, 0 < β < 1 and 0 < α < 1, β > 1 and it is DDFE for
α > 1, β > 1 and 0 < α < 1, 0 < β < 1.

The mean past life function(MPL) and reversed hazard function(RH) play important roles in re-
liability to model and analyze the data. For a continuous random variable X the reversed hazard
function is defined as ηF(t) = f (t)/F(t), for t such that F(t) > 0. The MPL of X is defined as
mF(t) = E(t − X|X ≤ t) =

∫ t
0 F(x)dx/F(t).

The next theorem is related to DFE and RH ordering.

Theorem 8. Let X and Y be two non-negative absolutely continuous random variables with dis-

tribution functions F(t) and G(t), and RH functions ηF(t) and ηG(t), respectively. If X
rh
≤ Y, that is

ηF(t) ≤ ηG(t) for all t ≥ 0, then

FEα(X; t) ≤ (≥)FEα(Y; t), ∀ α > 1 (0 < α < 1).

Proof: The result follows immediately using the fact F(t)G(x) ≤ F(x)G(t) for all x ≤ t. �

Example 6. The relation between the reversed hazard functions of Xn:n = max(X1, . . . , Xn) and X

is given by ηXn:n (t) = nηX(t), t > 0. So ηX(t) ≤ ηXn:n (t) or X
rh
≤ Xn:n, then, FEα(X; t) ≤ (≥)FEα(Xn:n; t),

∀ α > 1 (0 < α < 1).

Theorem 9. Let X be a non-negative absolutely continuous random variable with distribution func-
tion F. Then FEα(X; t) uniquely determines F(t).

Proof: By (3.2) we have ∫ t

0
Fα(x)dx = e−(α−1)FEα(X,t)Fα(x).



796 Maliheh Abbasnejad

Differentiating both sides of the above expression with respect to t, we get

Fα(t)
[
1 − e−(α−1)FEα(X,t)ηF(t) + (α − 1)

∂

∂t
FEα(X, t)e−(α−1)FEα(X,t)

]
= 0. (3.4)

For a fixed t > 0, ηF(t) is a solution of

g(x) = Fα(t)
[
1 − e−(α−1)FEα(X,t)x + (α − 1)

∂

∂t
FEα(X, t)e−(α−1)FEα(X,t)

]
= 0.

g(x) is a decreasing function, thus g(x) = 0 has a unique and particular solution. From (3.4) we see
that ηF(t) is a solution of g(x) = 0. Hence, ηF(t) is a unique solution of g(x) = 0. Thus, we get
FEα(X, t) uniquely determines ηF(t), which again uniquely determines F(t). �

Remark 2. Similar result given in Section 2 holds for last order statistic (Xn:n) and FE and DFE.

4. Characterization Based on DFE

Let X have the power distribution with cdf

F(x) =
(

x
β

)θ
, 0 < x < β, β, θ > 0. (4.1)

In the following theorem we show that the power distribution can be characterized in terms of DFE.

Theorem 10. Let X be a random variable RH rate ηF(t). Then

Eα(X; t) = c +
1

α − 1
log ηF(t), (4.2)

where c is a constant if F is power distribution defined as (4.1).

Proof: If X has a Power distribution in the form of (4.1), it can be easily shown that (4.2) holds with
c = 1/(α − 1) log[(αθ + 1)/θ]. Conversely, let (4.2) hold. Then we have∫ t

0
Fα(x)dx = a

Fα+1(t)
f (t)

,

where a = e−(α−1)c. Differentiating both sides with respect to t, we get

1 − a(α + 1)
a

= − f ′(t)
F(t)

· 1
η2

F(t)
.

Using the relation η′F(t) = f ′(t)/F(t) − η2
F(t) it follows that η′F(t)/η2

F(t) = (aα − 1)/a. Integrating both
sides, we obtain that ηF(t) = 1/(a1t), where a1 = (aα − 1)/a. This is the reversed hazard rate of power
distribution and the result follows. �

Also we can have this characterization in terms of MPL.

Theorem 11. Let X be a random variable with distribution function F and MPL mF(t). Then

Eα(X; t) = d − 1
α − 1

log mF(t), (4.3)
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where d is a constant if F is power distribution with density (4.1).

Proof: The MPL of power distribution is mF(t) = t/(θ + 1). Taking d = 1/(α − 1) log{(αθ+1)/(θ+1)}
gives the if part of theorem. For the only if part of the theorem, if (4.3) holds, we have∫ t

0
Fα(x)dx = bmF(t)Fα(t),

where b = e−(α−1)d. Differentiating both sides with respect to t, and using the relation ηF(t) =
(1 − m′F(t))/mF(t), we get m′F(t) = (1 − bα)/{b(α − 1)} = constant, that is the MPL function of X
is linear which is the desired result. �
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