• Title/Summary/Keyword: Fire risk assessment

Search Result 349, Processing Time 0.031 seconds

A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars (소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구)

  • Ryu, Ji-Oh;Choi, Pan-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • A quantitative risk assessment method for quantitatively evaluating the fire risk in designing a road tunnel disaster prevention facilities has been introduced to evaluate the appropriateness of a disaster prevention facility in a large tunnel through which all vehicle types pass. However, since the quantitative risk assessment method of the developed can be applied only to the large sectional area tunnels (large tunnels), it is necessary to develop a quantitative risk assessment method for road tunnels passing only small cars which has recently been constructed or planned. In this study, fire accidents scenarios and quantitative risk assesment method for small road tunnels through small cars only which is based on the methods for existing road tunnels (large tunnels). And the risk according to the distance between cross passage is evaluated. As a result, in order to satisfy the societal risk assessment criteria, the distance of the appropriate distance between cross passages was estimated to be 200 m, and the effect of the ventilation system of the large port exhaust ventilation system was quantitatively analyzed by comparing the longitudinal ventilation system.

The Risk Assessment of Tunnel Fire Through Real Scale Fire Test (실물터널 화재실험을 통한 터널화재 위험도 평가)

  • 최준석;최병일;김명배;한용식;장용재;이유환;황낙순;김필영
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.71-76
    • /
    • 2002
  • The real scale tunnel fire tests are carried out for the first time in domestic range to assess the extent of risk in the tunnel fire. The tunnel dimension is 465 m in length, 9.2 m in width and 6.5 m in height. Gasoline pools with 0.25 MW∼2.5 MW size and a 1500CC passenger car are used as fire sources. Six jet fans are used to change the flow velocity inside the tunnel. Temperatures at total 86 points in the tunnel are measured to find the temperature distribution and smoke behavior in the real tunnel fire. In the experiment, it is examined that the important parameters to assess the extent of risk in tunnel fire such as back layering of smoke front, descending of smoke layer and the fire size of a real passenger car.

An Experimental Study for Vertical Flame Spread Analysis of Aluminum Composite Panel (알루미늄 복합 패널의 수직 화염전파속도 분석을 위한 실험적 연구)

  • Kim, Il-Kwon;Kim, Bong-Chan;Ku, In-hyuck;Seo, Dong-Gu;Lim, Nam Gi;Kwun, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.315-317
    • /
    • 2013
  • To analyze vertical fire spreadability of aluminum composite panel, real scale test of aluminum composite panel and fire retardant aluminum composite panel was conducted as well as analysis of domestic code, test and domestic reaserch resulted in following conclusion. Fire spread risk assessment of aluminum Composite Panel is impossible with the current regulations (Cone Calorimeter Test). It need to changes of regulatory and combustion expanded risk assessment and regulatory changes in the test methods need to be judged. Also, there is quite a big different between the general aluminum Composite Panel and semi-non combustible of aluminum Composite Panel. However it is also deemed to be danger when present in the sidewall to the top consisting of fire spread. From now on, it is needed the study about interpretation of fire spread and sidewall of vertical fire spread analysis not only experiments for aluminum Composite Panel.

  • PDF

Prior Research and Case Study on Overseas Assessment Models for Developing Risk Assessment Model on Domestic Customer Products (국내 소비자 제품의 위해성 평가 모델 개발을 위한 해외 평가 모델 선행조사 및 사례 비교)

  • Han, Shinho;Lee, Jongmin;Kim, Heongkee;Seo, Kum-hee
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.207-215
    • /
    • 2015
  • Safety' can be used in a variety of ways and may also have different meanings when used in theoretical field and routinely used. In this paper, the 'safety' means that human injury, fire or physical accident condition does not occur while used by the end-user. The meaning of safety may be different by era and culture. Even in contemporary era, the meaning can be used differently by country, region and culture. As the rights of consumers are increasingly reinforced, we can expect the acceptable risk or safety level can rise higher. In this paper, the R-map of Japan and the European risk assessment guidelines (RAPEX) were reviewed considering domestic incidents database status and its applicability. Because it is difficult to make a model based on a R-map, a revised model was developed mainly based on European Assessment Model with a combination of the important characteristics of Japan model R-map. Also utilizing this revised model, the availability as a new risk assessment model was confirmed by comparing the test results for the same scenarios to the other risk assessment model (RAPEX/RAG).

A Strategy for the Generation of Accident Scenarios Using Multi-Component Analysis in Quantitative Risk Assessment (화학공정 위험영향 평가기술에서의 다중요소분석기법을 이용한 사고시나리오 산정에 관한 전략)

  • 김구회;이동언;김용하;안성준;윤인섭
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.24-33
    • /
    • 2001
  • This article proposes a strategy for producing accident scenarios in quantitative risk, which is peformed in process design or operation steps. Present worldwide chemical processes need off-site risk assessment as well as on-site one. Most governments in the world require industrial companies to submit the proper emergency plans through off-site risk assessment. Korea is also preparing for executing Integrated Risk Management System along with PSM and SMS. However.

  • PDF

Case Study on Advanced Fire and Explosion Index (화재폭발지수 개선에 대한 사례 연구)

  • Na, Gun Moon;Seoe, Jae Min;Lee, Mi Jeong;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.78-84
    • /
    • 2020
  • The F&EI technique is one of the risk assessments with many advantages. It can save time and effort compared to quantitative risk assessment (QRA). By using the evaluation result of this technique, it is possible to check the effectiveness of the investment cost. In addition, a relative risk ranking can be created and used to establish the facility management cycle and to prioritize investment. However, evaluating the target process can be evaluated more than the actual risk since the LCCF, a loss prevention measure, is too limited. In addition, calculating premiums via this method can result in excessive premiums, making it difficult to evaluate the risk precisely. Therefore, new safety guard was added to the LCCF of the F&EI risk assessment with reference to HAZOP and LOPA techniques. Newly added LCCFs are Deflagration arrester, Check valve, SIS, and Vacuum beaker, etc. As a case study, F&EI risk assessment was performed on Acetone storage tank of a API (Active pharmaceutical ingredient) plant to compare actual MPPD. The estimated loss amount was 592,558$ for the existing technique and 563,571$ for the improved technique, which was reduced by about 5% compared to the previous one.This proved that a more precise evaluation is possible and that the efforts for safety at the workplace are reflected in the evaluation results.

A Research of Risk Assessment for Urethane Fire Based on Fire Toxicity (연소 독성 기반 우레탄 화재의 위험성 평가 연구)

  • Kim, Sung-Soo;Cho, Nam-Wook;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2015
  • Fire in the risk management subject belongs to high risk disaster which accompanies personnel and materiel loss. So, management of disaster and safety is required to include fire prevention activities, fire risk prediction and investment of safety management expense. Combustion toxicity is required by gas toxicity test (KS F 2271), to minimize human damage. In this study, gas toxicity test were experimented with regard to urethane sample (Depth 5~25 mm) to obtain basic data. Fire effluent exposing to experimental animal were analyzed by FT-IR (Fourier transform infrared spectroscopy). Combustion toxicity index Lethal Fractional Effective Dose ($L_{FED}$) of ISO 13344 was calculated. According to the result of calculating Lethal Concentration 50% ($LC_{50}$) based on $L_{FED}$, $LC_{50}$ of urethane sample containing certain level of fire load is confirmed as $118{\sim}129g/m^3$. Through this study, applicability of this method was confirmed for fire risk assessment. This method can provide information to predict human damage by toxicity combustion gas for securing safety.

Rating Evaluation of Fire Risk for Combustible Materials in Case of Fire (화재 시 연소성 물질에 대한 화재 위험성 등급 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.75-82
    • /
    • 2021
  • This study investigated the fire risk assessment of woods and plastics for construction materials, focusing on the fire performance index-III (FPI-III), fire growth index-III (FGI-III), and fire risk index-IV (FRI-IV) by a newly designed method. Japanese cedar, red pine, polymethylmethacrylate (PMMA), and polyvinyl chloride (PVC) were used as test pieces. Fire characteristics of the materials were investigated using a cone calorimeter (ISO 5660-1) equipment. The fire performance index-III measured after the combustion reaction was found to be 1.0 to 15.0 with respect to PMMA. Fire risk by fire performance index-III increased in the order of PVC, red pine, Japanese cedar, and PMMA. The fire growth index-III was found to be 0.5 to 3.3 based on PMMA. Fire risk by fire growth index-III increased in the order of PVC, PMMA, red pine, and Japanese cedar. COpeak concentrations of all specimens were measured between 106 and 570 ppm. In conclusion, it is understood that Japanese cedar with a low bulk density and PMMA containing a large amount of volatile organic substances have a low fire performance index-III and high fire growth index-III, and thus have high fire risk due to fire. This was consistent with the fire risk index-IV.

Fire Risk Assessment of Temple Components in Young-dong Areas using Fire Loads (영동지역 사찰의 구성요소별 화재하중을 통한 화재위험성 평가)

  • Lee, Hae-Pyeong;Kim, Su-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.71-75
    • /
    • 2010
  • In this study, we have assessed the fire risk of Buddhist temples located in Youngdong area by means of fire loads of components. First, we categorized the components into Buddhist temples (Dae-Ung-Jeon, Pal-Sang-Jeon), Sam-Seong-Gak (Chil-Seong-Gak, San-Sin-Gak), a Buddhist temple dormitory (Sim-Geom-Dang, Seol-Seon-Dang), Lu, Il-Ju-Mun and then carried out a field survey. Then, we examined the area of each room, types as well as quantity and dimension of combustibles. The fire loads calculated in this way were 446.96 $kg/m^2$ for Buddhist temples, 331.71 $kg/m^2$ for Sam-Seong-Gak, 164.14 $kg/m^2$ for the Buddhist temple dormitory, 463.91 $kg/m^2$ for Lu and 1042.14 $kg/m^2$ for Il-Ju-Mun, thus showing Il-Ju-Mun with the biggest fire load. We speculate that this is because construction materials were similar in size and quantity to others albeit the area of Il-Ju-Mun is smallest.