• Title/Summary/Keyword: Fire Window Wall

Search Result 20, Processing Time 0.027 seconds

An Experimental Study on the Verification of Fire Extinguishing Performance According to the Combustion Characteristics of Building Window Frame (건축물 창호 프레임의 연소특성에 따른 방화성능 검증에 관한 실험적 연구)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.54-55
    • /
    • 2021
  • This study compared the fire safety standards for windows of Korea, the U.S. and Japan to prevent fire expansion through exterior wall openings, and conducted experiments using PVC and aluminum window frames, which are widely used in Korea.The experiment is KS F 2845 which combines frames of the same thickness and area with single-window form and 1 hour fire resistance glass with 8T thickness. Experiments showed that the PVC window was about 9 minutes and the aluminum window was about 26 minutes. However, in Korea, there are no test standards for windows installed at the opening of the exterior wall. In addition, fire safety standards for windows shall be established along with the designation of fire prevention zones.

  • PDF

An Experimental Study to Evaluate the Fire Risk of Building Windows (건축물 창호의 화재위험성 평가를 위한 실험적 연구)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.77-78
    • /
    • 2022
  • This study compared the fire safety standards for windows of Korea, the U.S. and Japan to prevent fire expansion through exterior wall openings, and conducted experiments using PVC and aluminum window frames, which are widely used in Korea.The experiment is KS F 2845 which combines frames of the same thickness and area with single-window form and 1 hour fire resistance glass with 8T thickness. Experiments showed that the PVC window was about 9 minutes and the aluminum window was about 26 minutes. However, in Korea, there are no test standards for windows installed at the opening of the exterior wall. In addition, fire safety standards for windows shall be established along with the designation of fire prevention zones.

  • PDF

The Experimental Study for Radiant Heat Flux of Non-insulated Glazed Window in Fire (화재시 비차열 유리의 복사열에 관한 실험적 연구)

  • Park, Soo-Young;Seo, Hee-Won;Kim, Dae-Hoi;Wang, Nam-Woong;Yeo, In-Hwan;Choi, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.26-33
    • /
    • 2014
  • Recently in Korea, the interest for using window and window-wall in building picks up due to the beauty and utilization of space. But, interior space of the buildings shall be compartmentalized by fire resistance structures in accordance with the Korean building codes to prevent the spread of flame and damage of human life in fire. In case of installing non-insulated glazed window in compartment wall, the flame spread to adjacent space and the damage of human life by radiant heat can occur in fire. On this study, to confirm the risk of radiant heat for non-insulated glazed window in fire, the fire resistance tests were conducted. The temperature rise and heat flux on unexposed space was measured and analyzed.

A Numerical Study of the Backdraft Behavior with the Variation of the Ignition Location and Time (점화원 위치 및 점화시간 변화에 따른 백드래프트 거동에 관한 수치적 연구)

  • Ko, Min Wook;Oh, Chang Bo;Han, Yong Shik;Do, Kyu Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • The behavior of backdraft in the compartment with different ignition locations and times was numerically investigated. The Fire Dynamics Simulator (FDS) v5.5.3 with a model-free simulation option was used in the numerical simulation of backdraft. The ignition source was located near the inside wall, at the compartment center and near the window opening, respectively. The ignition was started at the instance when the fresh air reached the ignition location or when a sufficient time passed compare to the instance of the arriving of the fresh air to the ignition location. As a result, for the ignition source was located near the inside wall, a strong fire ball was observed at once and the result was similar to the previous experimental result. For the ignition source was located at the center of the compartment, a strong fire ball was occurred and two strong fire balls were observed consecutively for the ignition time was delayed. For the ignition source was located near the window opening and longer time was given for the ignition compare the duration of the fresh air arriving to the ignition location, the rapid temperature variation was not observed because there was no flame. However, for the ignition was started at the instance when the fresh air reached the ignition location, the ignition could be initiated and a intensive fire ball was observed. The pressure measured at the upper inside part of the window opening provided a similar trend with the previous experimental result of compartment backdraft.

Analysis of Generating Efficiency in PV Window System consequent on Apartment House Wall Reflectivity (공동주택 벽체 반사율에 따른 PV창호시스템 발전효율 분석)

  • Choi, Doo-Sung;An, Jun-Ho;Jeon, Hung-Chan;Do, Jin-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • This study did quantitative comparative evaluation of changes in generation consequent on reflectivity of the protruding wall near the widow in case of application of PV window system to an apartment house. To be concrete, this study did comparative analysis of the generation of (B) through the process of composing Mock-up (A)comprising the protruding window near the window and Mock-up(B) free of nearby wall interference, and giving change to the reflectivity of the wall (Case_1~3). The analysis result showed that the difference in generation was slight in case solar radiation was less than 10,000Wh in all three conditions. On the contrary, in case solar radiation was more than 10,000 Wh, the generation as against Module(B), was analyzed to be 87~91% in Case_1(5% reflectivity), 18~60% in Case_2(85% reflectivity), and 16~71% in case_3(93% reflectivity), respectively.

A Study on the Energy Load of the Curtain Wall Buildings according to the Application of the Double-skin Facade System (커튼월 건축물의 이중외피 시스템 적용에 따른 에너지 부하량 검토)

  • Li, Bai-Hong;Lee, Jun-Gi;Kim, Sung-Hoon;Lee, Gab-Taek;Kim, Dong-Wan;Lee, Kyung-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.99-104
    • /
    • 2016
  • In this study, we researched the energy load according to the change of the inner window area ratio, the distance of the air gap and the azimuth of the curtain wall building, which installed the multistory double-skin facade(DSF). and we compared the results with the no double-skin facade situation as follows. With the DSF, it is better than other case, when the window area ratio is 40% and the air gap is 1.2m on the west, south-45-west, south-45-east and east. And it's best when the window area ratio is 40% and the air gap is 0.4m on the south. And on the east or south-45-east, the window area ratio is 40% and the air gap is 1.2m is better than other case with the DSF. On south, it is best when the window area ratio is 100% without DSF. On the south-45-west or west, it is best when the window area ratio is 40% without the DSF.

An Experimental Study on the Fire Safety Design of Windows in Building (건축물 창호의 화재안전설계를 위한 실험적 연구)

  • Lee, Byeong-Heun;Jin, Seung-Hyun;Han, Ji-Woo;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.10-11
    • /
    • 2018
  • In the building, the opening penetrates the wall and serves as a spreading channel for smoke and flame in case of fire. In Korea, more than 1,500 fire plume are generated annually, and the number has increased by about 30% over the past five years. Therefore, in the case of windows protecting the opening, fire protection performance is important to prevent the spread of fire. However, in Korea, the standard for window is not clear. In this study, fire tests (EN 13823) for windows were conducted in Korea, and then fire protection performance of windows was compared. As a result of the experiment, PVC windows showed a phenomenon that they could not withstand the temperature during the fire experiment, and AL windows showed a difference in the degree of cracking of the glass.

  • PDF

The Evaluation of Fire Endurance of Glazing Systems with Automatic Sprinklers (자동 스프링클러로 보호된 창의 내화 성능 평가에 관한 연구)

  • Lee, Chang-Seop;Chang, Sok-Hwa;Kim, Hong;Jung, Ki-Chang
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1998.11a
    • /
    • pp.73-76
    • /
    • 1998
  • To use glazing systems protected by automatic sprinklers as fire barriers in building compartmentation, fire endurance tests of these systems have been performed by several research workers. Most of the tests concerned the types of glasses and sprinklers, sprinkler water flow rate, and sprinkler activation time. Horizontal side wall sprinklers and window glazing systems with a vertical center mullion were mainly applied in the tests. In the study, full-scale fire endurance tests were carried out to verify the ability of large glazing systems divided by a horizontal mullion and protected by pendent vertical sprinklers. The result shows that the protrusive length of the horizontal mullion, which is perpendicular to the glass surface, is the main parameter that determines the fire resistance rating of the systems. The mullion obstructs the water flow in the glass.

  • PDF

Analysis of Causes of Casualties in Jecheon Sports Center Fire - Focus on Structural Factors of Building and Equipment - (제천 스포츠센터 화재의 다수 사상자 발생원인 분석 - 건물과 설비의 구조적인 요인을 중심으로 -)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.86-94
    • /
    • 2018
  • A sports center fire in Jecheon caused 29 deaths and 40 injuries. This study focused only on the structural factors of the building and equipment to investigate the causes of casualties based on the fire investigation results at the sports center. The structural factors of the building and equipment were a piloti-type parking lot, lack of a fire compartment between the piloti-type parking lot and lobby, lack of an installed sprinkler system, lack of an installed fire door in the main stairs on the $1^{st}$ floor, lack of an installed fire water tank on the rooftop, an installed pocket fire door in the main entrance on the $2^{nd}$ floor, poor fire compartments in an EPS space and a pipe pit and on each floor, a leak in the joint of a drain pipe, plywood installed in the hoistway of the freight elevator and interior wall, illegal remodeling of a closed rooftop structure, which cannot discharge smoke and heat, installed styrofoam insulation in the inside of the parking lot ceiling, an installed tempered glass window, which cannot be opened in the ladies bathroom on the $2^{nd}$ floor, and a finished dryvit exterior wall.

One-touch Descending Lifeline with Sliding Linkage Structure (슬라이드 링크 구조를 이용한 원터치 완강기)

  • Kim, Wonchan;Na, Dayul;Moon, Hyein;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.42-47
    • /
    • 2021
  • A one-touch descending lifeline that can easily be installed and rapidly evacuated in the event of a fire accident in high-rise buildings was proposed to overcome difficulties of conventional descending lifeline such as complex installation methods and procedures. However, this lifeline exhibits limitations such as restrictions in installation location and large apparatus size. Therefore, this paper proposes a sliding-type descending lifeline, which has a similar operation to that of current one-touch descending lifeline and solves the aforementioned limitations. A double square link mechanism including a sliding four-bar linkage is proposed and the descending lifeline support is redesigned to unfold in two different planes, allowing 3D movement. Additionally, the shape of the support frame is designed to obtain two attachment surfaces that can be attached to a wall, irrespective of the angle between the window and the inner wall. FEA analysis using ABAQUS is performed to ensure that the robustness of the presented support complies with the Fire Control Act Enforcement Decree. Finally, the feasibility of the proposed sliding one-touch descending lifeline is verified through fabrication.