• Title/Summary/Keyword: Finite-Volume Method

Search Result 1,412, Processing Time 0.032 seconds

Transient Radiative Heat Transfer Using Finite Volume Method with 2-Order Upwind Scheme and QUICK Scheme (비정상상태 복사열전달 해석을 위한 2 차 상류스킴 및 QUICK 스킴의 유한체적복사해법 적용 연구)

  • Byun, Do-Young;Lee, Gun-Ho;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1294-1299
    • /
    • 2004
  • Transient radiative heat transfer is analyzed in a one-dimensional slab using finite volume method (FVM). In this study, the step, $2^{nd}$ order upwind, and QUICK schemes are used for incident diffuse radiation and collimated beam, respectively. The results for diffuse radiation show that all schemes applied in this study give good agreements with available published results. In case of collimated beam, however, the results show deviations from the analytical solutions. To successfully describe the propagations of collimated beam, shock capturing schemes such as TVD scheme are need to be developed.

  • PDF

Numerical Prediction of Turbulent Flow in Bare Rod Bundles Using Control Volume Based Finite Element Method

  • Im, In-Young;Cheong, Jong-Sik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.480-486
    • /
    • 1995
  • Turbulent flow field in a subchannel of bare rod bundles has been numerically simulated using the control volume based finite element method. Launder & Ying model of Reynolds stress and Lam & Bremhorst low-Reynolds number model are implemented in k-$\varepsilon$ equations and momentum equations. Secondary flows are simulated using the stream function and vorticity approach. The control volume based finite element method enable to use the upwind scheme (donor cell scheme). Sensitivity of the constants in the models are studied, and proper values are found to get the close result to the measured flow distributions.

  • PDF

Numerical Analysis of Transonic Laminar Flow in Turbomachinery Using Finite Volume Method(I) Cascade Flow Analysis (유한체적법을 이용한 터보기계 회전차내부의 천이음속.층류 유동해석 (I) 익렬 유동해석)

  • 조강래;오종식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.445-451
    • /
    • 1993
  • For the calculation of transonic laminar flow fields in cascades of turbomachinery, a finite volume method employing Jameson's Runge-Kutta integration scheme as a basic algorithm is presented. The cell-vertex scheme introducing half-spacing mesh cells is developed. For the velocity gradients in the stress terms the integration with divergence theorem is used for the average concept. Some numerical results show good agreement with experimental data.

1- Dimensional Transient Radiative Heat Transfer Using Finite Volume Method with 2-Order Upwind Scheme and QUICK Scheme (1차원 비정상상해 복사열전달 해석을 위한 2차 상류스킴 및 QUICK 스킴의 유한체적복사해법 적용 연구)

  • Lee Gun-Ho;Kim Man-Young;Byun Do-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.201-207
    • /
    • 2006
  • Transient radiative heat transfer is analyzed in a one-dimensional slab using finite volume method (FVM). In this study, the step, $2^{nd}$ order upwind, and QUICK schemes are used for incident diffuse radiation and collimated beam, respectively. The results fer diffuse radiation show that all schemes applied in this study give good agreements with available published results. In case of collimated beam however, the results show deviations from the analytical solutions. To successfully describe the propagations of collimated beam shock capturing schemes such as TVD scheme are need to be developed.

STABILIZED-PENALIZED COLLOCATED FINITE VOLUME SCHEME FOR INCOMPRESSIBLE BIOFLUID FLOWS

  • Kechkar, Nasserdine;Louaar, Mohammed
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.519-548
    • /
    • 2022
  • In this paper, a stabilized-penalized collocated finite volume (SPCFV) scheme is developed and studied for the stationary generalized Navier-Stokes equations with mixed Dirichlet-traction boundary conditions modelling an incompressible biological fluid flow. This method is based on the lowest order approximation (piecewise constants) for both velocity and pressure unknowns. The stabilization-penalization is performed by adding discrete pressure terms to the approximate formulation. These simultaneously involve discrete jump pressures through the interior volume-boundaries and discrete pressures of volumes on the domain boundary. Stability, existence and uniqueness of discrete solutions are established. Moreover, a convergence analysis of the nonlinear solver is also provided. Numerical results from model tests are performed to demonstrate the stability, optimal convergence in the usual L2 and discrete H1 norms as well as robustness of the proposed scheme with respect to the choice of the given traction vector.

A NEW NUMERICAL APPROXIMATION OF DIFFUSION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에서 확산플럭스의 새로운 수치근사방법)

  • Myoung H.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.8-15
    • /
    • 2006
  • The existing approximations of diffusion flux in unstructured cell-centered finite volume methods are examined in detail with each other and clarified to have indefinite expressions in several respects. A new numerical approximation of diffusion flux at cell face center is then proposed, which is second-order accurate even on irregular grids and may be easily implemented in CFD code using cell-centered finite volume method with unstructured grids composed of arbitrary convex polyhedral shape.

A Locally Linear Reconstruction scheme on arbitrary unstructured meshes (임의의 비정렬 격자계에서의 국지적 선형 재구성 기법)

  • Lee K. S.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.31-36
    • /
    • 2003
  • A field reconstruction scheme for a cell centered finite volume method on unstructured meshes is developed. Regardless of mesh quality, this method is exact within a machine accuracy if the solution is linear, which means it has full second order accuracy. It does not have any limitation on cell shape except convexity of the cells and recovers standard discretization stencils at structured orthogonal grids. Accuracy comparisons with other popular reconstruction schemes are performed on a simple example.

  • PDF

An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries

  • Kim, Jungwoo;Park, Haecheon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1026-1035
    • /
    • 2004
  • An immersed boundary method for solving the Navier-Stokes and thermal energy equations is developed to compute the heat transfer over or inside the complex geometries in the Cartesian or cylindrical coordinates by introducing the momentum forcing, mass source/sink, and heat source/sink. The present method is based on the finite volume approach on a staggered mesh together with a fractional step method. The method of applying the momentum forcing and mass source/sink to satisfy the no-slip condition on the body surface is explained in detail in Kim, Kim and Choi (2001, Journal of Computational Physics). In this paper, the heat source/sink is introduced on the body surface or inside the body to satisfy the iso-thermal or iso-heat-flux condition on the immersed boundary. The present method is applied to three different problems : forced convection around a circular cylinder, mixed convection around a pair of circular cylinders, and forced convection around a main cylinder with a secondary small cylinder. The results show good agreements with those obtained by previous experiments and numerical simulations, verifying the accuracy of the present method.

Mechanical strength analysis for functionally graded composite plates (경사기능 복합재료 판의 기계적 강도해석)

  • Na, Kyung-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.66-69
    • /
    • 2005
  • Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.

  • PDF

Failure Analysis of RC Cylindrical Structures using Volume-Control Method (체적제어법에 의한 철근 콘크리트 원통형 구조물의 파괴 해석)

  • 송하원;방정용;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.195-202
    • /
    • 1999
  • In this Paper, a so-called volume-control method for nonlinear failure analysis of reinforced concrete cylindrical structures is proposed. The pressure node which defines uniform change of pressure on finite element is added into layered shell element utilizing in-plane constitutive models of reinforced concrete and layered formulation. With the pressure node formulation, one can control the change in volume enclosed by the cylindrical structures and determine the required change in pressure. An algorith of volume-control method is employed and failure analyses for RC cylindrical structures are carried out using proposed method.

  • PDF