• 제목/요약/키워드: Finite operator

검색결과 212건 처리시간 0.033초

시스템 복잡도를 개선한 $GF(2^m)$ 상의 병렬 $AB^2+C$ 연산기 설계 (Low System Complexity Bit-Parallel Architecture for Computing $AB^2+C$ in a Class of Finite Fields $GF(2^m)$)

  • 변기령;김흥수
    • 전자공학회논문지SC
    • /
    • 제40권6호
    • /
    • pp.24-30
    • /
    • 2003
  • 본 논문에서는 m차 기약 AOP를 적용하여 시스템 복잡도를 개선한 GF(2/sup m/)상의 새로운 AB²+C 연산기법과 그 하드웨어 구현회로를 제안하였다. 제안된 회로는 병렬 입출력 구조를 가지며, CS, PP 및 MS를 모듈로 하여 구성되며 이들은 각각 AND와 XOR 게이트의 규칙적인 배열구조를 갖는다. 제안된 회로의 시스템 복잡도는 (m+1)²개의 2-입력 AND게이트와 (m+1)(m+2)개의 2-입력 XOR게이트의 회로복잡도와 연산에 소요되는 최대 지연시간은 T/sub A/sup +/(1+「log₂/sup m/」)T/sub x/ 이다. 제안된 연산기의 시스템 복잡도와 구성상의 특징을 타 연산기를 표로 비교하였고, 그 결과 상대적으로 우수함을 보였다. 또한, 단순하면서도 정규화된 소자 및 결선의 구조는 VLSI 구현에 적합하다.

셀 구조물에서 중립면에 대한 유한요소망의 자동생성 (Automatic Generation of Finite Element Meshes on Midsurfaces in Shell Structures)

  • 손준희;채수원
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1517-1525
    • /
    • 2004
  • Shell finite elements are widely used for the analysis of thin section objects such as sheet metal parts, automobile bodies and et al. due to their computational efficiency. Since many of input data for finite element analysis are given as solid models or triangulated surface models, one should extract midsurface information from these input data initially and then construct shell meshes on the extracted midsurfaces. In this paper, a method of generating shell elements on midsurfaces directly from input models has been proposed, in which midsurface generating process can be omitted. In order to construct shell meshes, the input models should be triangulated on surfaces first, and then tetrahedral elements are generated by using an advancing front method, and finally mid shell surfaces are obtained from tetrahedral meshes. Some examples are given to demonstrate the efficiency of the proposed method.

다층 지반의 2차원 압밀 수치해석 II (2-D Consolidation Numerical Analysis of Multi_Layered Soils (II))

  • 류권일;김팔규;구기욱;남상규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.665-672
    • /
    • 2000
  • The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D,M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground Explicit method is simple for analysis algorithm and convenient for use except for applying the operator Crank-Nicolson method represents implicit method, which have different analysis method according to weighting factor. This method uses different algorithm according to dimension. And, this paper uses alternative direction implicit method. The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

Variational approximate for high order bending analysis of laminated composite plates

  • Madenci, Emrah;Ozutok, Atilla
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.97-108
    • /
    • 2020
  • This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

EFFICIENT AND ACCURATE FINITE DIFFERENCE METHOD FOR THE FOUR UNDERLYING ASSET ELS

  • Hwang, Hyeongseok;Choi, Yongho;Kwak, Soobin;Hwang, Youngjin;Kim, Sangkwon;Kim, Junseok
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제28권4호
    • /
    • pp.329-341
    • /
    • 2021
  • In this study, we consider an efficient and accurate finite difference method for the four underlying asset equity-linked securities (ELS). The numerical method is based on the operator splitting method with non-uniform grids for the underlying assets. Even though the numerical scheme is implicit, we solve the system of discrete equations in explicit manner using the Thomas algorithm for the tri-diagonal matrix resulting from the system of discrete equations. Therefore, we can use a relatively large time step and the computation of the ELS option pricing is fast. We perform characteristic computational test. The numerical test confirm the usefulness of the proposed method for pricing the four underlying asset equity-linked securities.

THE MODEL PREDICTIVE CONTROLLER FOR THE FEEDWATER AND LEVEL CONTROL OF A NUCLEAR STEAM GENERATOR

  • Lee, Yoon Joon;Oh, Seung Jin;Chun, Wongee;Kim, Nam Jin
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.911-918
    • /
    • 2012
  • Steam generator level control at low power is difficult due to its adverse thermal hydraulic properties, and is usually conducted by an operator. The basic model predictive control (MPC) is similar to the action of an operator in that the operator knows the desired reference trajectory for a finite period of time and takes the necessary control actions needed to ensure the desired trajectory. An MPC is based on a model; the performance as well as the efficiency of the MPC depends heavily on the exactness of the model. In this study, steam generator models that can describe in detail its thermal hydraulic behaviors, particularly at low power, are used in the MPC design. The design scope is divided into two parts. First, the MPC feedwater controller of the feedwater station is determined, and then the MPC level controller for the overall system is designed. Because the dynamic properties of a steam generator change with the power levels, a realistic situation is simulated by changing the transfer functions of the steam generator at every time step. The resulting MPC controller shows good performance.

Preconditioned Jacobian-free Newton-Krylov fully implicit high order WENO schemes and flux limiter methods for two-phase flow models

  • Zhou, Xiafeng;Zhong, Changming;Li, Zhongchun;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.49-60
    • /
    • 2022
  • Motivated by the high-resolution properties of high-order Weighted Essentially Non-Oscillatory (WENO) and flux limiter (FL) for steep-gradient problems and the robust convergence of Jacobian-free Newton-Krylov (JFNK) methods for nonlinear systems, the preconditioned JFNK fully implicit high-order WENO and FL schemes are proposed to solve the transient two-phase two-fluid models. Specially, the second-order fully-implicit BDF2 is used for the temporal operator and then the third-order WENO schemes and various flux limiters can be adopted to discrete the spatial operator. For the sake of the generalization of the finite-difference-based preconditioning acceleration methods and the excellent convergence to solve the complicated and various operational conditions, the random vector instead of the initial condition is skillfully chosen as the solving variables to obtain better sparsity pattern or more positions of non-zero elements in this paper. Finally, the WENO_JFNK and FL_JFNK codes are developed and then the two-phase steep-gradient problem, phase appearance/disappearance problem, U-tube problem and linear advection problem are tested to analyze the convergence, computational cost and efficiency in detailed. Numerical results show that WENO_JFNK and FL_JFNK can significantly reduce numerical diffusion and obtain better solutions than traditional methods. WENO_JFNK gives more stable and accurate solutions than FL_JFNK for the test problems and the proposed finite-difference-based preconditioning acceleration methods based on the random vector can significantly improve the convergence speed and efficiency.

COMPARISON OF NUMERICAL SCHEMES ON MULTI-DIMENSIONAL BLACK-SCHOLES EQUATIONS

  • Jo, Joonglee;Kim, Yongsik
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.2035-2051
    • /
    • 2013
  • In this paper, we study numerical schemes for solving multi-dimensional option pricing problem. We compare the direct solving method and the Operator Splitting Method(OSM) by using finite difference approximations. By varying parameters of the Black-Scholes equations for the maximum on the call option problem, we observed that there is no significant difference between the two methods on the convergence criterion except a huge difference in computation cost. Therefore, the two methods are compatible in practice and one can improve the time efficiency by combining the OSM with parallel computation technique. We show numerical examples including the Equity-Linked Security(ELS) pricing based on either two assets or three assets by using the OSM with the Monte-Carlo Simulation as the benchmark.

Weak Hyponomal Composition Operators Induced by a Tree

  • Lee, Mi-Ryeong;Ahn, Hyo-Gun
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.89-100
    • /
    • 2010
  • Let g = (V, E, ${\mu}$) be a weighted directed tree, where V is a vertex set, E is an edge set, and ${\mu}$ is ${\sigma}$-finite measure on V. The tree g induces a composition operator C on the Hilbert space $l^2$(V). Hand-type directed trees are defined and characterized the weak hyponormalities of such C in this note. Also some additional related properties are discussed. In addition, some examples related to directed hand-type trees are provided to separate classes of weak-hyponormal operators.

선형 시변 시스템에 대한 잘 정의된 (well-defined) 직렬 및 병렬 D-스펙트럼 (Well-Defined series and parallel D-spectra for preparation for linear time-varying systems)

  • ;이호철;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.521-528
    • /
    • 1999
  • The nth-order, scalar, linear time-varying (LTV) systems can be dealt with operators on a differential ring. Using this differential algebraic structure and a classical result on differential operator factorizaitons developed by Floquet, a novel eigenstructure(eigenvalues, eigenvectors) concepts for linear time0varying systems are proposed. In this paper, Necessary and sufficient conditions for the existence of well-defined(free of finite-time singularities) SD- and PD- spectra for SPDOs with complex- and real-valued coefficients are also presented. Three numerical examples are presented to illustrate the proposed concepts.

  • PDF