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COMPARISON OF NUMERICAL SCHEMES ON

MULTI-DIMENSIONAL BLACK-SCHOLES EQUATIONS

Joonglee Jo and Yongsik Kim

Abstract. In this paper, we study numerical schemes for solving multi-

dimensional option pricing problem. We compare the direct solving meth-
od and the Operator Splitting Method(OSM) by using finite difference

approximations. By varying parameters of the Black-Scholes equations
for the maximum on the call option problem, we observed that there

is no significant difference between the two methods on the convergence

criterion except a huge difference in computation cost. Therefore, the
two methods are compatible in practice and one can improve the time

efficiency by combining the OSM with parallel computation technique.

We show numerical examples including the Equity-Linked Security(ELS)
pricing based on either two assets or three assets by using the OSM with

the Monte-Carlo Simulation as the benchmark.

1. Introduction

Ever since Fischer Black and Myron Scholes proposed their renowned par-
tial differential equations on option pricing problems in 1973, there have been
numerous attempts to find the analytic form solutions of the Black-Scholes
equation for various derivatives in the financial market. However, it is very
hard to get an analytic form solution for most of financial derivatives due to
the complexity of the financial product itself and the system of the financial
market. Hence people in the financial industry have used numerical methods
such as Monte Carlo Simulation(MC) or Finite Difference Method(FDM) for
solving option pricing problems. The fast and accurate numerical computation
for option pricing is a crucial matter in the financial industry. In view of this, it
is of significance to study quantitative analysis such as parameter studies and
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performance comparison on numerical schemes for solving the Black-Scholes
equations.

The objectives of our study in this paper are the following. First, we com-
pare two different numerical schemes for the multi-dimensional Black-Scholes
equations by performance comparison; the direct solving method and the Oper-
ator Splitting Method. The direct solving method in this paper means a general
FDM scheme for multi-dimensional option pricing, which gives a large size of
linear system depending on dimensionality. In the direct solving method, the
computational cost is exponentially increasing as the problem’s dimension is
getting larger. An alternative to overcome this drawback is the Operator Split-
ting Method(OSM). The OSM is more efficient than the direct solving method
in the sense of computational cost. The OSM transmutes the original problem
which involves solving one large linear system into solving several small linear
systems. Further, the small linear systems can be solved independently with
each other. Hence it is suitable to combine the parallel computation technique
with the OSM. For the heat equation, it is well known that the OSM and the
direct solving method are equivalent on the accuracy in the sense that they
have the same convergence order. However, for the Black-Scholes equations,
there is no known mathematical error analysis as in the heat equation in which
the OSM and the direct solving method are compatible. Thus we try numerical
comparison for those schemes quantitatively. Second, we examine the efficiency
of the OSM for the Black-Scholes equations combined with a parallel compu-
tation technique called Message Passing Interface(MPI) implementation. The
MPI implementation makes it possible to allocate a serial computation work
to several cores (processors) so that the computation efficiency gets improved.

Our main conclusion is that the OSM not only gives same accuracy but
also provides huge efficiency for solving the Black-Scholes equations against
the direct solving method. Theoretically, the direct solving method is better
than the OSM in view of absolute error. However, our numerical experiments
present that both schemes show same convergence order numerically. There-
fore, we can consider that the two methods are virtually compatible on the
option pricing problems. We checked the cost efficiency of the OSM through
numerical comparison on serial processing. When we utilize parallel processing,
the efficiency of the OSM is more outstanding from the other. For the direct
solving method, there are parallel computation schemes such as the domain
decomposition methods. The domain decomposition methods require informa-
tion exchanges on interface regions of divided computational domain. Hence
as the number of divided regions is increased, the speed-up of the parallel com-
puting is significantly decreased. On the contrary, the OSM does not require
information exchanges. Thus one can easily implement a parallel computing of
the OSM without significant speed-up decreasing problem.

The rest of this paper is organized as follows. In Section 2, we introduce the
multi-dimensional option pricing problem and a relevant governing equation.
Next we summarize FDM schemes for both the direct solving method and the
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OSM. In Section 3, we conduct a performance analysis with two dimensional
maximum on the call option problem by comparing the two methods. We
will also show several numerical examples based on two or three dimensional
problems from real financial market. Then we show a technical improvement
in efficiency by parallel computation for the OSM. The paper’s final section is
the conclusion.

2. Numerical schemes

In this section, we state the multi-dimensional option pricing problem with
governing equation and introduce two numerical schemes to solve the problem.

2.1. Governing equation

Various numerical methods have been adopted to solve option pricing prob-
lems which are difficult to obtain analytic form solutions, including the Amer-
ican option and various exotic options. Since all the options share the same
fundamental structure, such as the portfolio replication under the no-arbitrage
condition, we consider the following Black-Scholes equations as the governing
equation.

(1)
∂u

∂t
+

1

2
σ2
1x

2 ∂
2u

∂x2
+

1

2
σ2
2y

2 ∂
2u

∂y2
+ ρσ1σ2xy

∂2u

∂x∂y
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru = 0.

Here, we restrict only two dimensional case for simplicity. Meanings of variables
and parameters are the following: u(t, x(t), y(t)) is the option value with t as
time, x as the first asset value, and y as the second asset value; σ1 and σ2
are the volatilities of the two assets, respectively; ρ is the correlation of the
two assets; and r is the risk-free interest rate. Since the PDE (1) is typically
augmented with a final time condition, we change the variable τ = T−t so that
we could solve from the initial condition for convenience. Under this change of
variable, the equation (1) becomes
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Note that (1) can be extended to more general (n-dimensional) PDE such as
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We will consider a three dimensional case as a numerical example in section
three.

2.2. Direct solving method

The direct solving method is the general FDM scheme to solve the equa-
tion (2) numerically considering the whole dimension at once. If we use the
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central difference for spatial discretization and the implicit scheme for time
discretization, the governing equation (2) is discretized as the following:
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Here the subscripts i and j stand for horizontal node index and vertical node
index respectively, and the superscript n stands for time step index. For sim-
plicity, we consider uniform grid where the nodal distances for each axis are
same such that ∆x = ∆y = h. When we mention that we solve the above sys-
tem (4) “directly” with the additional boundary conditions, it means we solve
the whole system at once by linear system solver such as CGM(Conjugate-
Gradient Method) or PARDISO [8].

2.3. Operator splitting method

The Operator Splitting Method(OSM) is another numerical scheme to solve
the equation (2), but in different way with the direct solving method. The
main idea of the OSM is to “divide and conquer” such that we literally divide
the multi-dimensional problem into several subproblems and solve in fractional
time step [1, 2, 7, 10]. In this two dimensional problem, we split the differential
operator L into L1 and L2 such that
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Then the systems (4) are sequentially split as the following.
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Figure 1. Operator splitting scheme for two dimension problem
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where h = ∆x = ∆y and λ1 = λ2 = 0.5 which are the weights for each step.
Here we weighted each step equally because we want to flatten the splitting
effect. After solving each problem for x-axis and y-axis separately as in Figure
1, we get the solution of next time step which we expect to be the compatible
numerical solution as the one from the direct solving method.

A classical error analysis indicates that the OSM for two dimensional heat
equation shows same accuracy order as the direct solving method [9]. For the
multi-dimensional Black-Scholes equations, unlike the heat equations, there
are the cross-derivatives such as uxy which would strengthen the splitting error
of the OSM. Hence the convergence criterion for the Black-Scholes equations
by two numerical schemes would be different than that of the heat equation.
However, the mathematical error analysis has not been studied yet on the OSM
for the Black-Scholes equations. We will examine this issue in the following
section through numerical experiments.

3. Numerical simulation

In this section, four numerical examples are presented. First, we study nu-
merical comparison of the accuracy between two numerical schemes, the direct
solving method and the OSM, with two dimensional maximum on the call prob-
lem by varying parameters. Second, we adopt these methods to price two assets
Equity Linked Security(ELS) as a real world problem. Since the analytic form
solutions are not known for ELS, we compared numerical solutions with the
Monte Carlo simulation as the benchmark. The third example consists of the
parallel implementation of the OSM by MPI. We checked that the efficiency of
the OSM could be enhanced even more with the parallel computing technique.
The last is the three dimensional ELS problem as an example of flexibility of
the scheme.

3.1. Numerical example: 2D max on call

The first example is the two dimensional maximum on the call problem.
Since the analytic form solution of this problem is known, we will compare the
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numerical solutions with the analytic form solution. Note that the analytic
form solution of call on the maximum of two risky assets is known [4] as
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The computational domain of the problem is Ω := [0, 3]× [0, 3] for t ∈ [0, 0.5]
with known-analytic one dimensional Black-Scholes solution as the Dirichlet
boundary condition. We compare the performance of the two numerical meth-
ods by varying nodal distance and parameters in the equation. Here the exer-
cise price and the interest rate are fixed at 1.0 and 0.05, respectively. For this
problem, we have the terminal payoff such that

max [max(S1, S2)−K, 0] ,

where S1, and S2 are the asset values and K is the exercise price.
The performance will be evaluated with relative l2 errors and relative l∞

errors which are defined as follows [6].
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We also define the parabolic norm of the errors as follows.
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Figure 2. Numerical solution of 2D max on call (Option
value and delta, FDM Grid: 201 × 201, ρ = 0.4, σ1 = 0.2,
σ2 = 0.4)

Table 1. Speed and convergence for 2D max on call (ρ = 0.4,
σ1 = 0.2, σ2 = 0.4). Time unit: Second

Grid size Elapsed Time e
(0,0)
l∞ / pe

(0,0)
l∞

(∆x, ∆t) DSM OSM DSM OSM

51 by 51 0.578 0.047 1.3108e-003 1.5644e-003

(0.06, 0.015) 2.6000e-003 2.7382e-003

101 by 101 4.545 0.472 5.3971e-004 6.6473e-004

(0.03, 0.0075) 1.0539e-003 1.2496e-003

201 by 201 41.231 2.464 2.4259e-004 3.0400e-004

(0.015, 0.00375) 4.9434e-004 6.2757e-004

401 by 401 385.772 13.59 1.1504e-004 1.4552e-004

(0.0075, 0.001875) 2.4664e-004 3.2669e-004

801 by 801 4159.66 83.539 5.5924e-005 7.1077e-005

(0.00375, 0.0009375) 1.2672e-004 1.7199e-004

pe
(0,0)
l∞ :=

√∫ T

0

(
e
(0,0)
l∞ (t)

)2
dt, pe

(1,0)
l∞ :=

√∫ T

0

(
e
(1,0)
l∞ (t)

)2
dt.

In Figure 2, we depict the numerical value and delta of the option. The delta
∂u
∂x is one of the Greeks, which are also a main interest in the financial industry,
especially for hedging of portfolio position. In Table 1 and Figure 3, the two
numerical methods show same convergence order. Furthermore, we note that
the OSM is highly efficient in computation time than the direct solving method.
In Table 2, we tabulate relative errors by varying correlation parameter and
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Figure 3. Elapsed time and convergence varying nodal dis-
tance for 2D max on call (ρ = 0.4, σ1 = 0.2, σ2 = 0.4, log scale
for y-axis)

volatilities of each asset. We note that there are some differences about the
errors when the parameters are relatively big such as ρ = 0.6, σ1 = 0.4, and
σ2 = 0.6. This clearly shows that the splitting error stems from the cross-
derivatives term. However, these bigger parameters would be considered as
outliers. In the real financial market about real multi-asset derivatives such
as ELS, it is very rare to consider bigger correlation than 0.5 between assets.
Hence we exclude the cases of higher correlation further than 0.6.

As in the computation result, it is natural to think that the direct solving
method should be more accurate than the OSM. However, the numerical result
also shows that the accuracy of the OSM is not significantly different from
that of the direct solving method. Even though the direct solving method
shows smaller absolute errors, the overall convergence orders are same for both
schemes. From these computation results, we conclude that the two methods
show same order of accuracy in general on this problem.

3.2. Numerical example: 2D ELS

In this sub-section, we examine Equity-Linked Security(ELS) pricing prob-
lem with a real financial product.1 The ELS is a debt security that its entity
is similar to the barrier options. It has been widely traded in Korea financial
market, with annual issuance volume exceeding half trillion U.S. dollars. A
distinguishable feature of the ELS is the automatic early-redemption condi-
tion before its maturity, which gives the payoff structure such as Figure 4.2

1MYSTAR ELS, Product number 1741, Dongyang Securities.
2We note that there are more complicated ELS products in the market [5].
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Table 2. Parameter analysis using relative errors and para-
bolic norms for 2D max on call (FDM Grid: 101× 101)

e
(0,0)
l∞ / pe

(0,0)
l∞ e

(0,0)

l2
/ pe

(0,0)

l2

Correlation Volatility DSM OSM DSM OSM

σx = 0.1 7.5245e-004 7.8955e-004 4.8041e-004 4.4764e-004

σy = 0.2 1.1834e-003 1.1276e-003 4.6506e-004 4.4459e-004

σx = 0.2 6.1618e-004 5.5483e-004 5.6369e-004 5.3747e-004

ρ = 0.2 σy = 0.4 1.2013e-003 1.1010e-003 6.4663e-004 6.2484e-004

σx = 0.4 6.9570e-004 6.6153e-004 7.9280e-004 7.5155e-004

σy = 0.6 1.5009e-003 1.3024e-003 9.8861e-004 9.3312e-004

σx = 0.1 7.6286e-004 8.2201e-004 4.2123e-004 4.2407e-004

σy = 0.2 1.0400e-003 1.0519e-003 4.0438e-004 4.1616e-004

σx = 0.2 5.3971e-004 6.6473e-004 5.0024e-004 5.7574e-004

ρ = 0.4 σy = 0.4 1.0539e-003 1.2496e-003 5.7257e-004 6.5534e-004

σx = 0.4 6.4607e-004 8.6250e-004 7.3343e-004 8.6064e-004

σy = 0.6 1.3077e-003 1.6075e-003 8.8546e-004 1.0406e-003

σx = 0.1 8.1264e-004 9.1223e-004 3.7085e-004 3.9679e-004

σy = 0.2 9.0137e-004 9.7539e-004 3.4249e-004 3.7420e-004

σx = 0.2 4.2385e-004 8.0610e-004 4.2660e-004 6.1444e-004

ρ = 0.6 σy = 0.4 8.5131e-004 1.3999e-003 4.8573e-004 6.7771e-004

σx = 0.4 5.7522e-004 1.1788e-003 6.5533e-004 9.9792e-004

σy = 0.6 1.0847e-003 1.9923e-003 7.6257e-004 1.1586e-003

Since there is no known analytic form solution for this option’s value, numer-
ical methods are used for valuation. Here we adopt the direct solving method
and the OSM to compute the numerical solution. Note that the option value
is not dollar-based value but the return rate. The computational domain is
Ω = [0, 3] × [0, 3] for t ∈ [0, 3]. We set the linear boundary condition which is
common in financial industry [3] such that

∂2u

∂x2
(0, y, t) =

∂2u

∂x2
(3, y, t) = 0,

∂2u

∂y2
(x, 0, t) =

∂2u

∂y2
(x, 3, t) = 0.

Since the analytic form solution is not available for the benchmark, we com-
pare the numerical solution with the one from Monte Carlo simulation(MC) at
several comparison points.3 Figure 5 expresses the numerical option value and

3Two-dimensional Monte Carlo asset path is generated by the following scheme:

S1(tn+1) = S1(tn) exp

{(
r −

1

2
σ2
1

)
∆t+ σ1

√
∆t∆W1

}
S2(tn+1) = S2(tn) exp

{(
r −

1

2
σ2
2

)
∆t+ σ2

√
∆t

(
ρ12∆W1 +

√
1− ρ212∆W2

)}
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Figure 4. 2D ELS payoff structure

Figure 5. 2D ELS value(return rate) and delta 1 (Sectional
view with asset 2 value = 1.0, FDM Grid: 301×301, σ1 = 0.2,
σ2 = 0.4, ρ = 0.5)

its sectional view of delta for asset 1 when asset 2 is fixed at 1.0 through the
direct solving method. For the direct solving method and the OSM, we used
301×301 node points. The number of Monte-Carlo paths is one million for each
comparison spot. In Table 3 and Figure 6, we tabulate the difference between
numerical solutions at several spots. They show that there are no significant
differences between the three numerical methods for this problem in the sense
of absolute difference with MC as the benchmark.

Based on the numerical results so far, we conclude that the operator splitting
method is accurate as much as the direct solving method for the option pricing
but it gives a huge time efficiency. This gives the reason to improve the time
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Table 3. 2D ELS Value Comparison (FDM Grid: 301× 301,
MC paths:106, σ1 = 0.3, σ2 = 0.3, ρ = 0.5)

Comparison point MC DSM (Difference) OSM (Difference)

S1 = S2 = 0.81 0.836264 0.841530 (0.005266) 0.841579 (0.005315)

S1 = S2 = 0.86 0.869240 0.875708 (0.006468) 0.875746 (0.006506)

S1 = S2 = 0.90 0.900167 0.905373 (0.005206) 0.905397 (0.005230)

S1 = S2 = 0.96 0.933335 0.937857 (0.004522) 0.937859 (0.004524)

S1 = S2 = 1.00 0.953581 0.956012 (0.004206) 0.957229 (0.005423)

Figure 6. 2D ELS Value Comparison (FDM Grid: 301×300,
MC paths: 106, σx = 0.3, σy = 0.3, ρ = 0.5)

efficiency of the OSM even more, which will be explained at the following
section.

3.3. OSM by MPI implementation

Here, we examine the speed-up of the parallel implementation of the two di-
mensional maximum on the call option. These days, we can utilize rich resource
of multi-core CPU. In a word, a serial processing can be divided into several
cores and the computation time decreases as the number of cores(processors)
increases. Thus, the technique known as parallel computation attracted the in-
dustry’s attention due to its time efficiency. Among several parallel computing
libraries, we choose MPICH2(in short MPI in this paper) for parallel implemen-
tation.4 One possible application of MPI to numerical method is for the Monte-
Carlo(MC) simulation. The serial asset path generation routine of the MC sim-
ulation can be divided into several computation cores without difficulty. On
the other hand, direct numerical implementation for multi-dimensional PDE is

4We refer http://www.mpich.org/ for details.
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Figure 7. MPI implementation for OSM

Table 4. Elapsed time comparison for 2D max on call prob-
lem (FDM Grid: 101× 101)

Number of Cores 1 2 4 8

Elapsed Time (sec) 0.0121768 0.0061159 0.0036957 0.0014801

known to be relatively difficult. However, we can see the OSM gives a small
and tri-diagonal linear systems to solve, and this property provides appropriate
environments for MPI implementation. That is, in the OSM, we solve serial
block systems per node for each step as depicted in Figure 7. We tabulate the
computing time of the maximum on the call pricing by the OSM with MPI in
Table 4. Here we used two computers which have Linux operating system and
four multi-cores respectively. We also depict the speed-up of parallelization in
Figure 8. As we see from the results, the computation time almost linearly
decreases as the number of the computation cores increases.

3.4. Numerical example: 3D ELS

As the last example, we choose a complicated three dimensional real fi-
nancial product from the Korea financial market. We compared numerical
solution by MPI implemented OSM with the MC results. There are many
multi-dimensional options which are based on three or more assets in the fi-
nancial market. The computation cost gets increasing exponentially as the
dimensionality of underlying assets grows. This gives us the reason to utilize
the OSM by the MPI implementation about three dimensional ELS pricing.5

5The referred ELS product is Product Number 2337 ELS of Dongyang Securities and its

underlying assets are 1) KOSPI200, 2) HSCEI, and 3) S&P500.
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Figure 8. Speed-up by MPI implementation of the OSM for
2D max on call problem(Unit: Second)

Now the governing equation extends to three-dimensional equation such as
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− r(xux + yuy + zuz − u).

If we apply the OSM similarly as before,
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Then we have the discretized equations at each step such that
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Figure 9. 3D ELS sectional view (Option value and delta 1,
FDM Grid:101 × 101 × 101, σ1 = 0.2, σ2 = 0.3, σ3 = 0.4,
ρ12 = ρ23 = ρ31 = 0.5)

=
1

2
ρ12σ1σ2xiyj

u
n+ 1

3
i+1,j+1,k + u

n+ 1
3

i−1,j−1,k − u
n+ 1

3
i+1,j−1,k − u

n+ 1
3

i−1,j+1,k

4h2

+
1

2
ρ23σ2σ3yjzk

u
n+ 1

3
i,j+1,k+1 + u

n+ 1
3

i,j−1,k−1 − u
n+ 1

3
i,j+1,k−1 − u

n+ 1
3

i,j−1,k+1

4h2
+
u
n+ 1

3
i,j,k

∆τ
,

3) z-step

un
i,j,k

∆τ
− 1

2
σ2
3z

2
k

un
i,j,k−1 − 2un

i,j,k + un
i,j,k+1

h2
− rzk

un
i,j,k+1 − un

i,j,k−1

2h
+

1

3
run

i,j,k

=
1

2
ρ13σ1σ3xizk

u
n+ 2

3
i+1,j,k+1 + u

n+ 2
3

i−1,j,k−1 − u
n+ 2

3
i+1,j,k−1 − u

n+ 2
3

i−1,j,k+1

4h2

+
1

2
ρ23σ2σ3yjzk

u
n+ 2

3
i,j+1,k+1 + u

n+ 2
3

i,j−1,k−1 − u
n+ 2

3
i,j+1,k−1 − u

n+ 2
3

i,j−1,k+1

4h2
+
u
n+ 2

3
i,j,k

∆τ
,

where h = ∆x = ∆y = ∆z. The computational domain is now in three
dimensional space such that Ω := [0, 3] × [0, 3] × [0, 3] for time t ∈ [0, 3] with
linear boundary condition such that

∂2u

∂x2
(0, y, z, t) =

∂2u

∂x2
(3, y, z, t) = 0,

∂2u

∂y2
(x, 0, z, t) =

∂2u

∂y2
(x, 3, z, t) = 0,

∂2u

∂z2
(x, y, 0, t) =

∂2u

∂z2
(x, y, 3, t) = 0.

Note that the payoff function is essentially same as the case of 2D ELS, although
this time three assets are checked for the early-redemption condition. Figure 9
represents a sectional numerical result with the third asset value is fixed. We
could check that the option value looks similar with 2D ELS but the value gets
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Figure 10. 3D ELS sectional view (Option value and delta
1, FDM Grid: 101 × 101 × 101, σ1 = 0.2, σ2 = 0.3, σ3 = 0.4,
ρ12 = ρ23 = ρ31 = 0.5)

increasing as an asset value does such as Figure 10. We also compared the result
with MC as a benchmark.6 Table 5 and Figure 11 show absolute differences
between numerical solutions of OSM and MC at several comparison points.
Again, the numerical result implies that there are no significant differences
between two methods, OSM and MC. Therefore, we could successively utilize
the OSM by MPI implementation to three dimensional ELS pricing.

4. Conclusion

In this paper, we examined two numerical schemes for multi-dimensional
Black-Scholes equations. In the direct solving method, we solve the equation
by whole dimension at once, which requires to solve the large size of linear
system. Although it is practically tractable to implement, there is an issue
of the computational cost for multi-dimensional problems. An alternative is

6Three-dimensional Monte Carlo asset path is generated by the following scheme:
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Table 5. 3D ELS value comparison (FDM Grid: 101×101×
101, MC paths: 106, σ1 = 0.2, σ2 = 0.3, σ3 = 0.4, ρ12 = ρ23 =
ρ31 = 0.5)

Comparison point MC OSM Difference

S1 = S2 = S3 = 0.81 0.736690 0.748769 0.012079

S1 = S2 = S3 = 0.90 0.813797 0.823149 0.009352

S1 = S2 = S3 = 1.02 0.894725 0.900774 0.006049

S1 = S2 = S3 = 1.11 0.936352 0.941243 0.004891

S1 = S2 = S3 = 1.20 0.964224 0.968576 0.004352

Figure 11. 3D ELS value comparison (FDM Grid: 101 ×
101 × 101, MC paths: 106, σ1 = 0.2, σ2 = 0.3, σ3 = 0.4,
ρ12 = ρ23 = ρ31 = 0.5)

the Operator Splitting Method(OSM) which brings huge efficiency in computa-
tional cost compared to the direct solving method. However, one might wonder
whether there are splitting errors which depend on the parameters of Black-
Scholes equation. Through multi-dimensional examples, we could reasonably
conclude that the two methods, the direct solving method and the OSM, are
practically compatible when it comes to the option pricing problems.

The OSM not only gives the same accuracy in error as the direct solving
method, but it also provides huge efficiency. Moreover, we could utilize even
better efficiency by combining it with the parallel computation technique. We
adopted the technique to either two or three dimensional option pricing prob-
lems. Hence, with the OSM, we could solve multi-dimensional Black-Scholes
equations accurately as the direct solving method and more efficiently than
that.
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