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a b s t r a c t

Motivated by the high-resolution properties of high-order Weighted Essentially Non-Oscillatory (WENO)
and flux limiter (FL) for steep-gradient problems and the robust convergence of Jacobian-free Newton-
Krylov (JFNK) methods for nonlinear systems, the preconditioned JFNK fully implicit high-order WENO
and FL schemes are proposed to solve the transient two-phase two-fluid models. Specially, the second-
order fully-implicit BDF2 is used for the temporal operator and then the third-order WENO schemes and
various flux limiters can be adopted to discrete the spatial operator. For the sake of the generalization of
the finite-difference-based preconditioning acceleration methods and the excellent convergence to solve
the complicated and various operational conditions, the random vector instead of the initial condition is
skillfully chosen as the solving variables to obtain better sparsity pattern or more positions of non-zero
elements in this paper. Finally, the WENO_JFNK and FL_JFNK codes are developed and then the two-
phase steep-gradient problem, phase appearance/disappearance problem, U-tube problem and linear
advection problem are tested to analyze the convergence, computational cost and efficiency in detailed.
Numerical results show that WENO_JFNK and FL_JFNK can significantly reduce numerical diffusion and
obtain better solutions than traditional methods. WENO_JFNK gives more stable and accurate solutions
than FL_JFNK for the test problems and the proposed finite-difference-based preconditioning accelera-
tion methods based on the random vector can significantly improve the convergence speed and
efficiency.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The robust and accurate numerical simulation for the two-phase
flow model is significantly important in the design and safety
analysis of nuclear reactors systems. However, for most reactor
safety analysis code such as RETRAN [1], TRAC [2], RELAP5 [3] and
TRACE [4] and so on, the semi-implicit numerical operator splitting
iterative methods and the low order (first-order) temporal and
spatial discretization schemes are widely adopted to solve the two-
phase problems, which introduce the material Courante-
Friedrichse-Lewy (CFL) stability limit of the time step size and
excessive numerical dissipation. Therefore, the fully implicit and
).

by Elsevier Korea LLC. This is an
high-fidelity numerical solutions with strong numerical stability
and high efficiency are being developed in the new generation of
reactor safety analysis and thermal hydraulic code such as RELAP7
[5] and CATHARE-3 [6].

To improve the numerical discrete accuracy, Bertolotto et al. [7]
implemented the high-order QUICKEST scheme and ULTIMATE
limiter into TRACE to greatly reduce the errors and improve the
spatial accuracy of the solute convection equation using the semi-
implicit methods, but the computational time can be greatly
increased by the high-order methods. Wang et al. [8] applied some
2nd-order flux limiter schemes including the MUSCL, Van Leer,
OSPRE, Van Albada and so on to the mass and energy equation in
TRACE, which also indicates that the high-resolution schemes can
effectively reduce the numerical diffusion, however, the restrictive
time-step size limit was needed for Wang's work because of the
semi-implicit methods. To allow the large time step and ensure the
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strong numerical stability, Frepoli et al. [9] studied the fully-implicit
two-phase three-filed flow model using the Newton method and
the relative large time steps can be allowed even on very fine
spatial grids which could not be considered for a semi-implicit
scheme. Mousseau et al. [10] discussed the physics-based pre-
conditioned Jacobian-free Newton Krylov (JFNK) method for solv-
ing the two-phase flow coupled to the heat conductionmodels. The
simulations demonstrate that a fully implicit solution derived from
JFNK method can obtain higher numerical accuracy and efficiency
than the conventional semi-implicit schemes at the much larger
time steps. However, both Frepoli and Mousseau adopted the first
order upwind scheme for the spatial discretization.

To ensure the high-order accuracy, the large time step allowed
and the strong numerical stability simultaneously, Zou et al.
[11e14] applied the symmetric Van Albada limiter for the spatial
discretization, the second-order fully-implicit backward differen-
tiation formula (BDF2) for the temporal discretization and JFNK
method for nonlinear systems to solve the two-fluid and drift-flux
two phase model and the numerical accuracy were presented for
the test problems, however, the preconditioned acceleration
method and effects for JFNK could not be analyzed in detailed.
Ashrafizadeh et al. [15] adopted the Advection Upstream Splitting
Methodþ (AUSMþ) scheme to spatial discretization, and the
CrankeNicolson and backward Euler schemes for the temporal
discretization. And then the Newton-Krylov (NK), JFNK, and explicit
method are discussed and compared with each other for two-fluid
two-phase flow simulation. Hu [16] and Saleem and Kozlowski [17]
also combined the second-order Roe type spatial discretization and
JFNK method to solve two-fluid six-equation model. In addition, a
preconditioner is very important to improve the computational
efficiency of JFNK and reduce the Krylov iterative number, some
SIMPLE-based preconditioners and matrix decomposition methods
were also tried to solve the two phase flow [18,19].

To further reduce potential numerical instabilities of the flux
limiter in choosing the unreasonable flux limiter functions and
develop the high-efficiency preconditioned methods of JFNK with
higher-order discretization in order to obtain high-resolution and
fast convergence rate for two-phase two-fluid model, in this work
the high-order Weighted Essentially Non-Oscillatory (WENO)
schemes are firstly adopted. Then preconditioned JFNK fully im-
plicit high-order WENO schemes and flux limiter (FL) methods are
successfully developed to solve the two-phase two-fluid model.
The finite-difference-based preconditioning acceleration methods
are successfully proposed by choosing the random vector/number
instead of the initial condition as the solving variables to pre-
determine the full sparsity pattern or all the positions of non-
zero elements as well as possible in this paper.

The remainder of the paper is organized as follows. Section 2
gives a brief description of the two-phase two-fluid model in
this paper. Section 3 presents the fully implicit discretization of
the two-phase flow governing equations with the WENO and FL
schemes for spatial discretization and BDF2 schemes for temporal
discretization. Section 4 focused on the preconditioning acceler-
ation methods for JFNK. In Section 5, numerical results are
analyzed and discussed to test the performance of the
WENO_JFNK and FL_JFNK. Finally, some conclusions are summa-
rized in Section 6.

2. Two-phase two-fluid model

In this paper, the primary purpose is to demonstrate the ad-
vantages of JFNK fully implicit high-order WENO schemes and FL
methods to solve the two-phase two-fluid model and to focus on
the two-phase hydrodynamic problems. Therefore, the governing
equations of the two mass equations and two momentum
50
equations are only considered and given as Eqs. (1)e(4).
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where
ag ¼ volume fraction of the gas phase (void fraction)
al ¼ 1� ag volume fraction of the liquid phase
ug ; ul ¼ gas phase velocity and liquid phase velocity,
respectively
rg ;rl ¼ gas phase density and liquid phase density, respectively
p ¼ pressure
fgg ; fgl ¼ gas phase gravity and liquid phase gravity, respectively
fig; fil ¼ the friction between the phases

The densities are defined as the function of pressure for both
phases, and the interfacial drag model can be used in St€adtke's
work [12,20]. Therefore, the rg ;rl, fig ; fil and fgg ; fgl are modeled by
the following Eqs. (5)e(7).

rgðpÞ¼ rg;0 þ kg%ðp�p0Þ; rlðpÞ¼ rl;0 þ kl%ðp�p0Þ (5)

fig¼
1
8
Ci
�
ug�ul

���ug�ul
��; fil¼�1

8
Ci
�
ug�ul

���ug�ul
��Ci¼1

8
Cda

intrm

(6)

fgg ¼agrggx; fgl ¼ alrlgx; (7)

where
rl;0 ¼ initial liquid density (rl;0 ¼ 0:5kg=m3)
rg;0 ¼ initial gas phase density (rg;0 ¼ 1� 103kg=m3)
p0 ¼ reference pressure (p0 ¼ 105Pa)
kl ¼ compressibility of the liquid phase (kl ¼
1� 10�7ðKg =m3Þ=Pa)
kg ¼ compressibility of the gas phase (kg ¼
1� 10�6ðKg =m3Þ=Pa)
Ci ¼ interfacial drag coefficient
Cd ¼ drag coefficient (Cd ¼ 0:44 in this work)

aint ¼ interfacial area per unit volume (aint ¼ 3agð1�agÞ
rp )

rm ¼ density of the continuous phase (rm ¼ agrg þ ð1 � agÞrl)
rp ¼ particle size (rp ¼ 0:5� 10�3)
gx ¼ gravity
3. Fully implicit high order numerical discretization

The two-fluid model described in Section 2 is used as the gov-
erning equation to simulate the two-phase flow in the tube. This
section introduces the fully implicit high order temporal and spatial
discretization using the BDF2, WENO and FL schemes, which
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determine the fully implicit residual equations of WENO_JFNK and
FL_JFNK methods for the two-phase flow model in this paper.
3.1. Fully implicit discretization

In this paper, the staggered grid-based finite volume method is
used so that the vector variables (velocity) are arranged at the edge
of the grid, and the scalar variables (pressure and void fraction) are
arranged at the center of the grid. The fully implicit discrete
schemes of the two-fluid governing equation can be broadly
expressed as following:
rnþ1
jþ1

2
¼ 1

ðfkÞnþ1
jþ1 � ðfkÞnþ1

j

8>>>>>><
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(10)
m1ðfkVÞnþ1
j �m2ðfkVÞnj þm3ðfkVÞn�1

j

Dt
þðCfkDukAÞnþ1

jþ1
2

�ðCfkDukAÞnþ1
j�1

2
�Rnþ1

k;j ¼0
(8)

where

superscripts nþ 1 and n, n� 1 ¼ different time points
subscripts k ¼ gas phase or liquid phase (k ¼ g; l)
subscripts j ¼ grid spatial index
m1;m2;m3 ¼ implicit time discretization scheme coefficients
Dt ¼ time step size
V ¼ volume of grid
A ¼ area of grid
uk ¼ gas phase velocity or liquid phase velocity, respectively
(k ¼ g; l)
fk ¼ scalar variable or vector variables shown in Table 1
CfkD ¼ fk that is discreted at the edge of control volume jþ 1

2 and

j� 1
2

Rnþ1
k;j ¼ the remainder of the governing equation including fi, fg

and p in the current time step shown in Table 1.

In this paper, two implicit time discretization schemes are used,
one is the first-order backward differencing (BDF1 m1 ¼ 1;m2 ¼ 1;
m3 ¼ 0), and the other is the second-order backward differencing
(BDF2m1 ¼ 1:5;m2 ¼ 2;m3 ¼ 0:5).
3.2. FL schemes

The flux limiter (FL) schemes can give a result as close as
possible to the second-order central scheme in smooth regions and
as sufficient as possible to avoid the appearance of spurious oscil-
lation if the flux limiter functions can be reasonably chosen. By
limiting the slope of interpolation based on the values at the center
points of the adjacent control volumes, the mathematical expres-
sion of CfkD at the interface of control volume [15] can be presented
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as follows:

CfkD
nþ1
jþ1

2
¼

8>>>>>>>><
>>>>>>>>:

ðfkÞnþ1
j þ f

�
rnþ1
jþ1

2

� ðfkÞnþ1
jþ1 � ðfkÞnþ1

j

2
if ðukÞnþ1

jþ1
2
� 0

ðfkÞnþ1
jþ1 � f

�
rnþ1
jþ1

2

� ðfkÞnþ1
jþ1 � ðfkÞnþ1

j

2
if ðukÞnþ1

jþ1
2
<0

(9)

where
f
�
rnþ1
jþ1

2

�
is the slope limiter and Dxj is the grid length. rnþ1

jþ1
2

is the

smoothness parameter to evaluate the change rate of the local
gradients. Some slope limiter methods have been shown in Table 2
and more flux limiter can be read in Ref [21,22].
3.3. WENO schemes

WENO schemes have been widely developed to obtain a higher
accuracy than ENO type of flux limiter in smooth regions while
more effectively avoid the appearance of spurious oscillation [23].
Themain idea ofWENO scheme is to use theweighted combination
of all the existing ENO stencils rather than choosing one specific
ENO stencil to make numerical properties as good as possible.
Based on the theory of WENO schemes, the WENO schemes can be
expressed as Eq. (11) for the interface value.
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The weight factors unþ1;�
jþ1=2;r and unþ1;þ

jþ1=2;r can be given by:
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where ðfkÞnþ1;�
jþ1=2;r and ðfkÞnþ1;þ

jþ1=2;rare the interpolation terms used for
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the construction of the polynomial CfkD
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r (

P
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zero (for example ε ¼ 10�6). ISj;ris a measure of smoothness of

interpolation polynomials and CfkD
nþ1
jþ1

2
can achieve the highest (2k�

1) order accuracy in smooth regions. In this work, the WENO3
scheme (k ¼ 2) are adopted for WENO_JFNK methods and the

specific expression of ðfkÞnþ1;±
jþ1=2;r , C

nþ1
r and ISj;r can be shown in

Table 3.

3.4. Fully-implicit high-order discretized residuals for JFNK

Based on the above expression, the fully-implicit high-order
discretized residuals of Eqs. (1)e(4) in this paper can be obtained as
follows
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where Resnþ1
a;j , Resnþ1

p;j , Resnþ1
ug;jþ1

2
and Resnþ1

ul;jþ1
2
are the discrete residuals

of void fraction ag , pressure p, gas phase velocity ugand liquid phase
velocity ul, respectively. It is straightforward to compute the
nonlinear residual equations by subtracting the terms on the right
hand side from the left hand side of the discrete equations. It is
worth noting that the discrete center position of the momentum
equation is located at the jþ 1

2. And then the fully implicit high
order residual equations of JFNK can be rewritten in a vector form
as shown in Eq. (17).
52
FRes
�
xnþ1

�
¼ FRes

0
BBBBBBBBBBBBBBB@

anþ1
j

pnþ1
j

unþ1
g; jþ1

2

unþ1
l;jþ1

2

1
CCCCCCCCCCCCCCCA

¼

2
6666666666666664

Resnþ1
a;j

Resnþ1
p;j

Resnþ1
ug;jþ1

2

Resnþ1
ul;jþ1

2

3
7777777777777775

¼ 0 (17)

4. Preconditioning acceleration methods for JFNK

JFNK methods combine the Jacobian-free technique, Newton
iteration and Krylov method to solve the complicated nonlinear
systems. The basic framework can be expressed as

J
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xnþ1;k

�
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�
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(18)

where Jðxnþ1;kÞ is the Jacobian matrix of the kth Newton step. The
sparse linear systems Eq. (18) can be solved by the Krylov methods
(for example, GMRES or BICGSTAB). Because only the product of
matrix and vector is needed for the Krylov method, the product of
the Jacobian matrix Jðxnþ1;kÞand the vector can be approximated by
a finite difference of the residuals FResðxnþ1Þ for JFNK methods and
doesn't require to explicitly construct the Jacobian matrix Jðxnþ1;kÞ
in order to reduce the computational cost and memory for
complicated problems:

J
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�
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FRes
�
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�
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where n is a basis vector of Krylov subspaces and ε is the



Table 1
fkand Rnþ1

k;j for mass or momentum equations.

Governing equation fk Rnþ1
k;j

Mass equation akrk 0
Momentum equation akrkuk ð�fikV þ fgkVÞnþ1

jþ
1
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j Þ
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perturbation parameter that is chosen and studied in many refer-
ences [25,26].

Since most of the computational time for JFNK methods is spent
in Krylov iteration, an efficient preconditioner Pk is very important
to improve the convergence rate and the computational efficiency,
which also has a great influence on the Newton iteration of JFNK. To
obtain a good preconditioning effect, the preconditioner Pk in every
Newton step should be a good approximation for Jacobian matrix
Jðxnþ1;kÞ and the matrix inversion P�1;k can be solved as easily as
possible.

Though the full sparsity of the Jacobin matrix can be theoreti-
cally pre-determined by the mesh connectivity and the stencil of
the schemes, for the sake of the generalization of the pre-
conditioning acceleration methods to solve the complicated and
various operational conditions of the two phase flowmodel, in this
paper the finite difference methods [27] are proposed and adopted
to obtain the positions (sparsity pattern) and the specific values of
non-zero elements of Jacobin matrix by the following expression:
Table 3
WENO3 scheme for spatial discretization [24].

WENO3

ðfkÞnþ1;�
jþ1=2;0

ðfkÞnþ1;�
jþ1=2;1
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Cnþ1;�
0

Cnþ1;�
1

Cnþ1;þ
0

Cnþ1;þ
1

ISnþ1;�
j;0

ISnþ1;�
j;1

ISnþ1;þ
j;0

ISnþ1;þ
j;1

Table 2
FL schemes used in the FL_JFNK methods [21,22].

Discretization scheme

FUD (First order upwind)
CD (Central difference)
VA (Van Albada)

VL(Van Leer)

ENO/Minmod
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where ej is the column j of the identity matrix and hj is the
perturbation parameter. x is the variable and FðxÞ is the residual.
Specially, the positions and number of non-zero elements (sparsity
pattern) of Jacobian matrix are firstly obtained as the Step one of
the finite difference methods and then the specific values of the
non-zero elements are computed as the Step two.

We find that maybe the finite difference methods cannot give the
full sparsity pattern or the positions of all the non-zero elements of
the Jacobin matrix if the variables x at initial condition are chosen to
obtain the sparsity structure. More specifically, Because the sparsity
pattern of the Jacobian matrix are numerically determined by the
specific values of the residuals FðxÞ based on the variable x using Eq.
(20, the sparsity pattern obtained by the finite difference methods
may be not equal to the theoretical and full sparsity structure.

To explain the above-mentioned point, we take the flux limiter
of Van Leer scheme as an example. It can be observed from Eq. (9)

that CfkD
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Table 4
Update frequency of sparsity structure of the preconditioners for JFNK.

Strategy/
Case

Calculation method of Sparsity pattern of Jacobian matrix using Eq. (20) (positions of non-zero elements, Step one)

A Obtain the sparsity pattern by choosing the random vector as the variables once at the initial time (calculate the sparsity pattern once)
B Obtain the sparsity pattern by choosing the initial condition as the variables once at the initial time (calculate the sparsity pattern once)
C a) Obtain the sparsity pattern by choosing the initial condition as the variables for the first time at the initial time; b) Obtain the sparsity pattern by choosing

the variables at the time t ¼ Dt for the second time at the time t ¼ Dt (calculate the sparsity pattern twice)
D a) Obtain the sparsity pattern by choosing the initial condition as the variables for the first time at the initial time; b) Obtain the sparsity pattern by choosing

the variables at the time t ¼ Dt for the second time at the time t ¼ Dt; c) Obtain the sparsity pattern by choosing the variables at the time t ¼ 2Dt for the
second time at the time t ¼ 2Dt (calculate the sparsity pattern three times)

Table 5
Parameters for steep gradient problems.

Parameter Value Unit

Pipe length L 2 m
Gravity 0.0 m=s2

ul;init 1 m=s
ug;init 1 m=s
ainit

8<
:

0:7� 1:25� jx� 0:6j if0:2 � x � 0:6
0:7� 1:25� jx� 1:4j if1:0 � x � 1:4
0:2 otherwise

e

Pinit 105 Pa

ainlet 0.2 e

ul;inlet 1 m=s
ug;inlet 1 m=s
Poutlet 105 Pa
Ncell 20/100/200 e

Dt 1� 10�3 s

Ntimestep 200 e

Table 6
L-1 norm errors of two-phase flow peak problem.

Different methods L-1 Norm

Ncell ¼ 50 Ncell ¼ 100 Ncell ¼ 200

FUD þ BDF1þJFNK 7:98� 10�2 4:62� 10�2 2:93� 10�2

VL þ BDF2þJFNK 5:01� 10�2 1:47� 10�2 9:05� 10�3

WENO3þBDF2þJFNK 4:38� 10�2 1:40� 10�2 8:75� 10�3
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only connected with the variables ðfkÞnþ1
j if the finite difference

methods are adopted on the basis of the initial conditions. We

cannot obtain the full sparsity pattern of ðfkÞnþ1
j and ðfkÞnþ1

jþ1 . as well
as possible if the sparsity pattern is constructed only once by
choosing the initial conditions as the variables, which maybe result
in the unreasonable preconditioners.

We take it for granted that the method of updating sparsity
pattern several times with the change of the variables is adopted to
get the full sparsity structure as well as possible as shown in Table 4
(Case C ~ D). However, more frequent update of Jacobianmatrix will
result in more computational cost. Therefore, to prevent the finite
difference methods from getting the incomplete sparsity pattern of
Fig. 1. Numerical results of void fraction for the steep-gra
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the Jacobin matrix when the variable ðfkÞnþ1
jþ1 is equal to ðfkÞnþ1

j or

the slope limiter f
�
rnþ1
jþ1

2

�
is zero on the basis of the initial condi-

tions, the random number is chosen as the variables x to pre-
determine the full sparsity pattern or all the positions of non-
zero elements as well as possible using the finite difference
methods (Case A as shown in Table 4) because it is usually not

possible for the randomvector to make the variable ðfkÞnþ1
jþ1 be equal

to ðfkÞnþ1
j and the slope limiter f

�
rnþ1
jþ1

2

�
be zero. After that, the

sparsity structure obtained by using the random vector needs to be
calculated only once to get better sparsity pattern ormore positions
of non-zero elements than that using the variables from the initial
conditions, which avoids adopting the method of updating sparsity
pattern several times in the original manuscript to get the full
sparsity structure.

In addition, the ILU(k) matrix decomposition [28] is adopted to
obtain the preconditioning matrix based on the sparsity of Jacobian
matrix calculated by the finite difference methods. To analyze the
proposed finite-difference-based preconditioning acceleration
methods based on the random vector, Table 4 show the different
finite-difference-based preconditioning strategies for the
dient two-phase problems for Ncell ¼ 100 and Case A.



Fig. 2. Sparsity structure of Jacobian matrix for VL þ BDF2þJFNK ðNcell ¼ 20Þ.
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WENO_JFNK and FL_JFNK methods (Case A~D).
5. Numerical analysis and results

Based on the formulation and the algorithm presented in
Sec.3e4, the code WENO_JFNK and FL_JFNK are developed to
solve the two fluid models using the Fortran language. The steep-
gradient problem, phase appearance/disappearance problem, U-
tube problem and linear advection problem are tested to study
the numerical properties of WENO_JFNK and FL_JFNK. Then
Table 7
Convergence and CPU time for VL þ BDF2þJFNK methods.

Different preconditioning
Cases

Convergence criteria per time
step

Ncell Average Newton
step

A 10e6 50 3.020
100 3.330
200 3.025

10e10 50 4.185
100 6.430
200 4.665

B 10e6 50 3.275
100 3.455
200 3.500

10e10 50 8.215
100 8.515
200 9.575

C 10e6 50 3.280
100 3.345
200 3.045

10e10 50 7.120
100 8.230
200 6.650

D 10e6 50 3.335
100 3.825
200 3.590

10e10 50 8.560
100 8.635
200 9.655
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proposed finite-difference-based preconditioning methods based
on the random vector are analyzed for the different problems in
detail. For the numerical results, FUD þ BDF1þJFNK,
VL þ BDF2þJFNK and VA þ BDF2þJFNK methods (FUD, VL and VA
schemes for spatial discretization and BDF1 and BDF2 schemes
for temporal discretization respectively) are chosen as the rep-
resentatives of the code WENO_JFNK. WENO3þBDF2þJFNK
methods (WENO3 schemes for spatial discretization and BDF2
schemes for temporal discretization respectively) is used for the
code WENO_JFNK.
5.1. Steep-gradient two-phase flow problem

The steep gradient problem is often used to test the numerical
tracking ability of nuclear reactor analysis code on relevant scalars
such as void fraction distributions, which is difficult to get the ac-
curate numerical solutions because of the unphysical numerical
diffusion or oscillation for many numerical schemes.

The boundary conditions, initial profiles, mesh number, time
step and other parameters for the steep gradient problems in this
paper are presented in Table 5. Comparedwith the Zou's works [11],
the different void fraction and larger time step are chosen in this
paper and the ILU (k ¼ 3) are chosen to obtain the preconditioner.

The numerical solutions of void fraction using the different
methods including FUD þ BDF1þJFNK,VL þ BDF2þJFNK and
WENO3þBDF2þJFNK methods are shown in Fig. 1 for Ncell ¼ 100
and the preconditioning strategy of Case A. The L-1 error norms [11]
of void fraction for the different methods are listed in Table 6 on the
different mesh numbers ðNcell ¼ 50;100;200Þ and can be defined as

kLk1 ¼Dx
XNcell
i¼1

��agðxiÞ�ag;exact
�� (21)

where agðxiÞ is the numerical solution, and ag;exact is the exact so-
lution, Dx is the cell size, Ncell is the number of cells.

It can be clearly observed from Fig. 1 and Table 6 that
VL þ BDF2þJFNK and WENO3þBDF2þJFNK have more accurate
numerical solutions than FUD þ BDF1þJFNK and significantly
number per time Average GMRES iterative number per Newton
step

CPU time
(s)

1.005 1.0764
1.512 3.5412
1.031 9.8124
2.705 1.6224
2.592 6.1916
2.429 16.2865
2.032 1.0984
2.229 3.6704
2.606 9.9840
3.550 2.6052
3.401 8.4864
3.445 28.5950
1.881 1.4664
1.572 4.2448
1.338 10.7001
3.082 2.9484
2.865 9.1572
2.541 23.2909
1.964 1.5600
2.229 4.6832
1.969 10.7001
3.054 3.1796
3.415 9.5460
4.046 33.540



Table 8
Convergence and CPU time for WENO3þBDF2þJFNK methods.

Different preconditioning
Cases

Convergence criteria per time
step

Ncell Average Newton number per time
step

Average GMRES iterative number per Newton
step

CPU time
(s)

A 10e6 50 2.650 1.234 1.2232
100 2.620 1.006 2.5642
200 2.625 1.213 8.2112

10e10 50 5.120 2.380 2.3402
100 4.080 2.837 5.0544
200 4.275 2.752 16.0681

B 10e6 50 2.730 1.073 1.2436
100 2.710 1.288 2.7768
200 2.650 1.245 8.5377

10e10 50 5.700 2.521 2.5492
100 4.240 3.100 5.5884
200 4.330 2.808 16.6333

C 10e6 50 2.685 1.279 1.3324
100 2.690 1.273 2.8672
200 2.645 1.227 8.8552

10e10 50 5.565 2.521 2.9681
100 4.210 2.876 5.9438
200 4.325 2.793 17.3665

D 10e6 50 2.675 1.250 1.4701
100 2.670 1.243 3.0642
200 2.640 1.227 9.0748

10e10 50 5.295 2.606 3.2544
100 4.150 2.810 6.3996
200 4.295 2.796 18.2249

Table 9
Parameters for the phase disappearance/appearance problem.

Parameter Value Unit

Pipe length L 1 m
Gravity 0.0 m=s2

ul;init 1 m=s
ug;init 1 m=s
ainit

�
0:0 if0:2 � x � 0:4
1:0 otherwise

e

Pinit 105 Pa
ainlet periodic e

ul;inlet periodic m=s
ug;inlet periodic m=s
Poutlet periodic Pa
Ncell 200 e

Dt 1� 10�3 s

Ntimestep 200 e

Fig. 3. Numerical results of void fraction using the FUD þ BDF1þJFNK,
VA þ BDF2þJFNK and WENO3þBDF2þJFNK methods with Ncell ¼ 200 for the phase
disappearance/appearance two phase problem.
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reduce the unphysical numerical diffusion of the low order
FUD þ BDF1 method, but the slight numerical oscillation can be
observed at x ¼ 0.8 m and x ¼ 1.6 m for the VL þ BDF2þJFNK
method. However, WENO3þBDF2þJFNK can give the more stable
and accurate solutions than VL þ BDF2þJFNK for the tested steep
gradient or discontinuous cases.

To analyze the different preconditioning strategies, the sparsity
structure of the Jacobian matrix for VLþ BDF2þJFNK methods with
Ncell ¼ 20 is presented in Fig. 2. The parameter nz means the
number of non-zero elements of sparsity structure and the differ-
ence of sparsity structure between Case A and Case B is located in
blue box. It can be seen that there is the significant difference be-
tween Case A and Case B. Case A can obtain more non-zero ele-
ments and better sparsity structure than Case B, which indicates
the effectiveness and reasonability for the preconditioning strategy
of Case A.

In addition, the convergence and CPU time of VL þ BDF2þJFNK
and WENO3þBDF2þJFNK methods are tested and analyzed on the
different mesh numbers. The average Newton iterative number per
56
time step, average GMRES iterative number per Newton step and
CPU time are summarized in Tables 7 and 8, respectively. Numerical
results show that the preconditioning acceleration strategy of Case
A has the best convergence and highest efficiency for both
VL þ BDF2þJFNK and WENO3þBDF2þJFNK among the four pre-
conditioning strategies/cases.
5.2. Phase appearance/disappearance two-phase flow problem

The phase disappearance/occurrence two-phase flow is often
occurred in reactor thermal hydraulic analysis, which is also a very
challenging problem due to the difficulty of capturing sharp dis-
continuities and the prone to non-physical oscillations [12,29]. The



Table 10
Convergence and CPU time for the phase disappearance/appearance two-phase problem using WENO3þBDF2þJFNK with Ncell ¼ 200.

WENO3þBDF2þJFNK with the different
preconditioning Cases

Convergence criteria per
time step

Average Newton number
per time step

Average GMRES iterative number per
Newton step

CPU
time

Number of non-zero
elements

A 10e6 3.27 2.26 11.15 10004
10e10 4.49 3.70 15.58

B 10e6 No convergence e e 7487 (First time)
10e10

C 10e6 3.30 2.26 11.70 9896 (Second time)
10e10 4.55 3.89 16.59

D 10e6 3.30 2.56 12.51 9861 (Third time)
10e10 4.55 4.06 17.27

Table 11
Convergence and CPU time for the phase disappearance/appearance two-phase problem using VA þ BDF2þJFNK with Ncell ¼ 200.

VA þ BDF2þJFNK with the different
preconditioning Cases

Convergence criteria per
time step

Average Newton number per
time step

Average GMRES iterative number per
Newton step

CPU
time

Number of non-zero
elements

A 10e6 4.12 2.69 13.34 9977
10e10 5.58 3.83 19.94

B 10e6 No convergence e e 4706 (First time)
10e10

C 10e6 4.38 2.82 14.44 9595 (Second time)
10e10 6.05 4.16 21.56

D 10e6 4.89 2.70 14.84 9578 (Third time)
10e10 6.78 3.81 24.24

Fig. 4. Schematic of the U-tube two-phase flow problem.
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parameters for this test problem are given in Table 9 and the ILU
(k ¼ 4) are chosen to obtain the preconditioner.

Fig. 3 shows the numerical results of the void fraction using the
FUD þ BDF1þJFNK, VA þ BDF2þJFNK and WENO3þBDF2þJFNK
methodswithNcell ¼ 200 and the preconditioning strategy of Case A.
The WENO3þBDF2þJFNK methods gives the best numerical solu-
tions for the above-mentioned three methods and the
Table 12
Parameters for the U-tube two-phase flow problem.

Parameter Value Unit

Pipe length L 4.0 m
Gravity g

�
9:81 ifx � 2
�9:81 otherwise

m=s2

ul;init 0 m=s
ug;init 0 m=s
ainit 0.5 e

Pinit 105 Pa
ainlet Non-penetrating wall e

ul;inlet Non-penetrating wall m=s
ug;inlet Non-penetrating wall m=s
Poutlet Non-penetrating wall Pa
Ncell 50 e

Dt 1� 10�2 s

Ntimestep 1000 e
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FUD þ BDF1þJFNK methods has the worst solutions. Then Tables 10
and 11 present the average Newton iterative number per time step,
average GMRES iterative number per Newton step and CPU times of
WENO3þBDF2þJFNK and VA þ BDF2þJFNK with the different pre-
conditioningstrategies (CaseA~CaseD), respectively.Asexpected, the
JFNK method with the preconditioning strategy of Case A shows the
relatively robustness and high computational efficiency for the phase
appearance/disappearance two-phase flow problem compared with
other preconditioning strategies. However, there is no convergence
for the preconditioning strategy of Case B. In addition, it can be
observed from Tables 10 and 11 that WENO3þBDF2þJFNK unex-
pectedly shows higher computational efficiency and better conver-
gence than VA þ BDF2þJFNK for the tested phase appearance/
disappearance two-phase flowproblem because of the fewer GMRES
iterative number for WENO3þBDF2þJFNK methods.

5.3. U-tube two-phase flow problem

The typical U-tube two-phase flow test problem is originally
proposed by Delhaye [30], which has spawned many similar two-
phase numerical benchmark problems and is widely used in
simulating two-phase flow interaction. In this manuscript, the U-
tube two-phase flow problem is a hybrid one of the typical U-tube
manometer problem and the sedimentation problem [12,13]. At the
same time, the semicircle part at the bottom of the U-tube is
simplified by the two interconnected straight pipes. The gravity
field is equal to the constant g and does not change along the
semicircle pipe, which is similar to the simplification of U-tube
problem as shown in Refs. [12,13].

The schematic of theU-tube two-phaseflowproblem is shown in
Fig. 4 and theparameters are summarized inTable 12. A straight tube
with a different gravitational constant G in different directions is
used to approximate theU-tube two-phaseflowproblem.Due to the
gravity effect, the uniformly mixed two-phase flow can be eventu-
ally separated so that the lighter gas phase is located at the top of the
tube and the heavier liquid phase at the bottom of the tube. Since
many researchers have studied the results of FL methods, hereinwe
focus on the results of the WENO scheme and the efficiency of the
proposed preconditioned acceleration methods.

Figs. 5e7 show the transient numerical results of the void fraction



Fig. 5. Numerical results of void fraction distribution using the WENO3þBDF2þJFNK
method for the U-tube two-phase flow problems.

Fig. 6. Numerical results of pressure distribution using the WENO3þBDF2þJFNK
method for the U-tube two-phase flow problems.

Fig. 7. Numerical results of liquid velocity distribution using the WENO3þBDF2þJFNK
method for the U-tube two-phase flow problems.

Table 13
Convergence and CPU time for the U-tube two-phase flow problems with Ncell ¼ 50.

WENO3þBDF2þJFNK
with the different
preconditioning Cases

Convergence
criteria per
time step

Average
Newton
number per
time step

Average
GMRES
iterative
number per
Newton
step

CPU
time

Number
of non-
zero
elements

A 10e6 3.90 5.04 4.36 2265
10e10 4.68 6.89 5.19

B 10e6 No
convergence

e e 1602
10e10

C 10e6 3.89 5.08 4.51 2262
10e10 4.69 6.92 5.37

D 10e6 3.92 5.05 4.76 2260
10e10 4.70 6.92 5.67

Table 14
Parameters for the linear advection problem.

Parameter Value Unit

Pipe length L 1 m
Gravity 0.0 m=s2

ul;init 1 m=s
ug;init 1 m=s
ainit 0:5þ 0:2 sin

�
2px
L

�
e

Pinit 105 Pa

ainlet periodic e

ul;inlet periodic m=s
ug;inlet periodic m=s
Poutlet periodic Pa
Ncell 200 e

Dt 5� 10�3 s

Pipe length L 200 m
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distribution, pressure distribution and liquid velocity distribution
using the high order WENO3þBDF2þJFNK method at the different
time, respectively. These numerical solutions shows the good sym-
metry. The gas-liquid interface can be clearly observed and finally
moves to the middle position of the U-tube height at about 10s.

The average Newton iterative number per time step, average
GMRES iterative number per Newton step and total CPU time of the
WENO3þBDF2þJFNK method with the different preconditioning
strategies for the U-tube two-phase flow test problem are sum-
marized in Table 13 to further verify the effectiveness and good
convergence behavior of the preconditioning acceleration method
of Case A.

5.4. Linear advection problem

The linear advection problem is chosen to further analyze the
numerical accuracy and preconditioning efficiency of FL_JFNK and
WENO_JFNK codes. The sine distribution and peak in space will be
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always kept with time for the problem herein. The parameters are
summarized in Table 14, and the ILU (k¼ 3) are chosen to obtain the
preconditioner.

Numerical results of the void fraction are presented in Fig. 8
and Table 15 using FUD þ BDF1þJFNK, VA þ BDF2þJFNK and
WENO3þBDF2þJFNK methods with Ncell ¼ 200. WENO3þBDF2þ



Fig. 8. Numerical results of void fraction for the linear advection problems for Ncell ¼ 200 and Case A.

Table 15
L-1 norm errors of two-phase flow linear advection problem.

Different methods L-1 Norm (Ncell ¼ 200)

FUD þ BDF1þJFNK 2:13� 10�2

VL þ BDF2þJFNK 5:54� 10�3

WENO3þBDF2þJFNK 5:19� 10�3
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JFNK and VA þ BDF2þJFNK methods can obtain better solutions
than the FUD þ BDF1þJFNK method. And WENO3þBDF2þJFNK
can give the more smooth and accurate solutions than VA þ
BDF2þJFNK for the continuous cases.

Tables 16 and 17 present the numerical properties and efficiency
of the different preconditioning strategies (Case A~Case D). Since
the solving-variables x has a sine distribution in space, it is usually

impossible to make the variable ðfkÞnþ1
jþ1 be equal to ðfkÞnþ1

j and the

slope limiter f

�
rnþ1
jþ1

2

�
be zero in Section 4, Therefore, the initial
Table 16
Convergence and CPU time for the linear advection problem using WENO3þBDF2þJFNK

WENO3þBDF2þJFNK with the different
preconditioning Cases

Convergence criteria per
time step

Average Newt
per time step

A 10e6 4.89
10e10 6.48

B 10e6 4.91
10e10 6.53

C 10e6 4.93
10e10 6.51

D 10e6 4.90
10e10 6.49

Table 17
Convergence and CPU time for the linear advection problem using VA þ BDF2þJFNK wit

VA þ BDF2þJFNK with the different
preconditioning Cases

Convergence criteria per
time step

Average Newton
time step

A 10e6 4.14
10e10 5.81

B 10e6 4.19
10e10 6.16

C 10e6 4.11
10e10 5.83

D 10e6 4.19
10e10 5.89
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conditions and profiles can give the similar sparsity pattern with
the random vector chosen as the solving-variables x from the
number of non-zero elements in Tables 16 and 17, which can further
verify the importance of choosing the appropriate solving-variables
and the rationality and generalization of choosing the random
vector to pre-determine the better full sparsity pattern.
6. Conclusion

This paper presents the preconditioned JFNK fully implicit high-
order WENO schemes (WENO_JFNK) and FL methods (FL_JFNK) to
solve the transient two-phase two-fluid model. The proposed
finite-difference-based preconditioning acceleration methods for
WENO_JFNK and FL_JFNK choose the random vector/number
instead of the initial condition as the solving variables to pre-
determine the full sparsity pattern or all the positions of non-
zero elements as well as possible.

Numerical results show that both WENO_JFNK and FL_JFNK can
with Ncell ¼ 200.

on number Average GMRES iterative number per
Newton step

CPU
time

Number of non-zero
elements

4.30 15.11 9401
5.44 18.42
4.35 15.69 9385
5.48 19.08
4.33 16.42 9392
5.45 19.75
4.31 16.62 9395
5.44 20.45

h Ncell ¼ 200.

number per Average GMRES iterative number per
Newton step

CPU
time

Number of non-zero
elements

3.46 11.42 9367
4.56 16.23
3.69 11.77 9349
4.68 17.42
3.62 11.97 9354
4.66 18.86
3.68 12.06 9356
4.64 19.40
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significantly reduce numerical diffusion and obtain better solutions
than loworder FUDþBDF1þJFNKmethods. But the slight numerical
oscillation can be observed for the FL_JFNK method in solving the
steep gradient two-phase problem. However, the WENO_JFNK
method has no visible numerical oscillation and gives the more
stable and accurate solutions than FL_JFNK for these three test
problems shown in this paper byusing theweighted combination of
all the existing ENO stencils rather than choosing one specific ENO
typeofflux limiter tomakenumerical properties as goodaspossible.

In addition, the good convergence behavior and efficiency of the
proposed finite-difference-based preconditioning acceleration
methods are also verified for both the WENO_JFNK and FL_JFNK
methods by choosing the random vector instead of the initial
condition as the solving variables to pre-determine the better full
sparsity pattern or get more positions of non-zero elements as well
as possible. Further studies need to focus on extending the
WENO_JFNK method and the proposed preconditioning accelera-
tion to solve the more realistic and complicated two-phase flow
problems.
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