Browse > Article
http://dx.doi.org/10.12989/sem.2020.73.1.097

Variational approximate for high order bending analysis of laminated composite plates  

Madenci, Emrah (Department of Civil Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University)
Ozutok, Atilla (Department of Civil Engineering, Faculty of Engineering, KTO Karatay University)
Publication Information
Structural Engineering and Mechanics / v.73, no.1, 2020 , pp. 97-108 More about this Journal
Abstract
This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.
Keywords
composite plate; high order shear deformation theory; finite element method; static analysis; energy principle;
Citations & Related Records
Times Cited By KSCI : 47  (Citation Analysis)
연도 인용수 순위
1 Sheikh, A. and A. Chakrabarti (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elements Anal. Design, 39(9), 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3.   DOI
2 Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650.   DOI
3 Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.   DOI
4 Bellifa, H., A. Bakora, A. Tounsi, A. A. Bousahla and S. Mahmoud (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.   DOI
5 Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019.   DOI
6 Bischoff, M. and Bletzinger, K.U. (2004), "Improving stability and accuracy of Reissner-Mindlin plate finite elements via algebraic subgrid scale stabilization", Comput. Methods Appl. Mech. Eng., 193(15), 1517-1528. https://doi.org/10.1016/j.cma.2003.12.036.   DOI
7 Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.   DOI
8 Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.   DOI
9 Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.   DOI
10 Stein, M. (1986), "Nonlinear theory for plates and shells including the effects of transverse shearing", AIAA J., 24(9), 1537-1544. https://doi.org/10.2514/3.9477.   DOI
11 Taleb, O., Houari, M. S. A., Bessaim, A., Tounsi, A. and Mahmoud, S. (2018), "A new plate model for vibration response of advanced composite plates in thermal environment", Struct. Eng. Mech., 67(4), 369-383. https://doi.org/10.12989/sem.2018.67.4.369.   DOI
12 Thai, C. H., L. V. Tran, D. T. Tran, T. Nguyen-Thoi and H. Nguyen-Xuan (2012), "Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method", Appl. Math. Model. 36(11), 5657-5677. https://doi.org/10.1016/j.apm.2012.01.003.   DOI
13 Touratier, M. (1991), "An efficient standard plate theory", International journal of engineering science 29(8), 901-916.   DOI
14 Tu, T. M., Quoc, T. H., & Van Long, N. (2017), "Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory", Struct. Eng. Mech., 62(3), 311-324. https://doi.org/10.12989/sem.2017.62.3.311.   DOI
15 Whitney, J. (1969), "The effect of transverse shear deformation on the bending of laminated plates", J. Compos. Mater. 3(3), 534-547. https://doi.org/10.1177/002199836900300316.   DOI
16 Xiao, J., D. Gilhooley, R. Batra, J. Gillespie and M. McCarthy (2008), "Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method", Compos. Part B Eng., 39(2), 414-427. https://doi.org/10.1016/j.compositesb.2006.12.009.   DOI
17 Daouadji, T. H. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.   DOI
18 Capsoni, A. and Corradi, L. (1997), "A mixed finite element model for plane strain elastic-plastic analysis Part I. Formulation and assessment of the overall behaviour", Comput. Methods Appl. Mech. Eng., 141(1-2), 67-79.   DOI
19 Cervera, M., Chiumenti, M. and Codina, R. (2010), "Mixed stabilized finite element methods in nonlinear solid mechanics: Part ii: Strain localization", Comput. Methods Appl. Mech. Eng., 199(37), 2571-2589. https://doi.org/10.1016/j.cma.2010.04.005.   DOI
20 Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart. Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.   DOI
21 Desai, Y., Ramtekkar, G. and Shah, A. (2003), "Dynamic analysis of laminated composite plates using a layer-wise mixed finite element model", Compos. Struct., 59(2), 237-249. https://doi.org/10.1016/S0263-8223(02)00121-6.   DOI
22 Draiche, K., Tounsi, A. and Mahmoud, S. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng.,11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.   DOI
23 Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT)", J. Nano Res., 57, https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
24 Zhen, W. and Wanji, C. (2008), "An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams", Compos. Struct., 84(4), 337-349. https://doi.org/10.1016/j.compstruct.2007.10.005.   DOI
25 Yaghoubshahi, M. and Alinia, M.M. (2015), "Developing an element free method for higher order shear deformation analysis of plates", Thin Wall. Struct., 94, 225-233. https://doi.org/10.1016/j.tws.2015.04.022.   DOI
26 Yousfi, M., Atmane, H. A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.   DOI
27 Zhang, Y. and Yang, C. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014.   DOI
28 Zienkiewicz, O., Taylor, R. and Baynham, J. (1981), "Mixed and irreducible formulations in finite element analysis- Some general comments and applications to the incompressibility problem (in solid and fluid mechanics)", International Symposium on Hybrid and Mixed Finite Element Methods, Atlanta, GA.
29 Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct. 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.   DOI
30 El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.   DOI
31 Eratli, N. and Akoz, A.Y. (2002), "Free vibration analysis of Reissner plates by mixed finite element", Struct. Eng. Mech., 13(3), 277-298. https://doi.org/10.12989/sem.2002.13.3.277.   DOI
32 Grover, N., Maiti, D. and Singh, B. (2014), "An efficient C 0 finite element modeling of an inverse hyperbolic shear deformation theory for the flexural and stability analysis of laminated composite and sandwich plates", Finite Elements Anal. Design, 80, 11-22. https://doi.org/10.1016/j.finel.2013.11.003.   DOI
33 Zuo, H., Yang, Z., Chen, X., Xie, Y. and H. Miao (2015), "Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory", Compos. Struct. 131, 248-258. https://doi.org/10.1016/j.compstruct.2015.04.064.   DOI
34 Eratll, N. and Akoz, A. (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Comput. Struct., 65(4), 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8.   DOI
35 Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.   DOI
36 Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.   DOI
37 Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012.   DOI
38 Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.   DOI
39 Houari, T., Bessaim, A., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2018), "Bending analysis of advanced composite plates using a new quasi 3D plate theory", Steel Compos. Struct., 26(5), 557-572. https://doi.org/10.12989/scs.2018.26.5.557.   DOI
40 Javed, S., Viswanathan, K., Izyan, M., Aziz, Z. and Lee, J. (2018), "Free vibration of cross-ply laminated plates based on higher-order shear deformation theory", Steel Compos. Struct., 26(4), 473-484. https://doi.org/10.12989/scs.2018.26.4.473.   DOI
41 Karama, M., Afaq, K. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", J. Solid Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.   DOI
42 Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.   DOI
43 Mantari, J., Oktem, A. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", J. Solid Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008.   DOI
44 Meksi, R., S. Benyoucef, A. Mahmoudi, A. Tounsi, Adda Bedia, E.A. and Mahmoud, S. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandwich Struct. Mater., 21(2), 727-757. https://doi.org/10.1177%2F1099636217698443.   DOI
45 Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct. 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.AID-NME573%3E3.0.CO;2-P.   DOI
46 Aagaah, M.R., Mahinfalah, M. and Jazar, G.N. (2003), "Linear static analysis and finite element modeling for laminated composite plates using third order shear deformation theory", Compos. Struct., 62(1), 27-39. https://doi.org/10.1016/S0263-8223(03)00081-3.   DOI
47 Abdelaziz, H. H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.   DOI
48 Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and S. Mahmoud, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct. 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.   DOI
49 Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech. Trans. ASME, 18, 31-38.   DOI
50 Ozutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", J. Struct. Stability Dynam., 13(02), https://doi.org/10.1142/S0219455412500563.
51 Akoz, A. and Kadioglu, K. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comput. Struct. 60(4), 643-651. https://doi.org/10.1016/0045-7949(95)00418-1.   DOI
52 Akoz, A. and Ozutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells", J. Numeric Methods Eng.,47(12), 1933-1981. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12%3C1933::AID-NME860%3E3.0.CO;2-0.   DOI
53 Akoz, A. and Uzcan, N. (1992), "The new functional for reissner plates and its application", Comput. Struct. 44(5), 1139-1144. https://doi.org/10.1016/0045-7949(92)90334-V.   DOI
54 Akoz, A., Omurtag, M. and Dogruoglu, A. (1991), "The mixed finite element formulation for three-dimensional bars", J. Solid Struct., 28(2), 225-234. https://doi.org/10.1016/0020-7683(91)90207-V.   DOI
55 Akoz, A.Y. and Eratli, N. (2000), "A sectorial element based on Reissner plate theory", Struct. Eng. Mech., 9(6), 519-540. https://doi.org/10.12989/sem.2000.9.6.519.   DOI
56 Reddy, J. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct. 25(1-4), 21-35. https://doi.org/10.1016/0263-8223(93)90147-I.   DOI
57 Akoz, Y. and Kadioglu, F. (1999), "The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic timoshenko beams", J. Numeric Methods Eng., 44(12), 1909-1932. https://doi.org/10.1002/(SICI)1097-0207(19990430)44:12%3C1909::   DOI
58 Ozutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043.   DOI
59 Pagano, N. and H. J. Hatfield (1972), "Elastic behavior of multilayered bidirectional composites", AIAA J., 10(7), 931-933. https://doi.org/10.2514/3.50249.   DOI
60 Ramu, I. and S. Mohanty (2012), "Study on free vibration analysis of rectangular plate structures using finite element method", Procedia Eng., 38, 2758-2766. https://doi.org/10.1016/j.proeng.2012.06.323.   DOI
61 Reddy, J. N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.   DOI
62 Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct. 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.   DOI
63 Ambartsumian, S. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5(5), 69-77. https://doi.org/10.1002/sapm1944231184.
64 Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.   DOI
65 Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct. 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008.   DOI
66 Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.   DOI
67 Beldjelili, Y., Tounsi, A. and Mahmoud, S. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart. Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.   DOI
68 Belinha, J. and Dinis, L. (2006), "Analysis of plates and laminates using the element-free Galerkin method", Comput. Struct., 84(22), 1547-1559. https://doi.org/10.1016/j.compstruc.2006.01.013.   DOI
69 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77. https://doi.org/10.1177/002199836900300316.
70 Reddy, J. N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Florida, USA.
71 Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", J. Solid Struct., 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X.   DOI
72 Sahoo, R. and B. Singh (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105, 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043.   DOI
73 Sahoo, R. and B. Singh (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117, 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002.   DOI