• Title/Summary/Keyword: Finite fields etc.

Search Result 32, Processing Time 0.036 seconds

Arithmetic of finite fields with shifted polynomial basis (변형된 다항식 기저를 이용한 유한체의 연산)

  • 이성재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.4
    • /
    • pp.3-10
    • /
    • 1999
  • More concerns are concentrated in finite fields arithmetic as finite fields being applied for Elliptic curve cryptosystem coding theory and etc. Finite fields arithmetic is affected in represen -tation of those. Optimal normal basis is effective in hardware implementation and polynomial field which is effective in the basis conversion with optimal normal basis and show that the arithmetic of finite field with the basis is effective in software implementation.

Construction of the Digital Logic Systems based on the Improved Automatic Theorem Proving Techniques over Finite Fields (개선된 자동정리증명 기법에 기초한 유한체상의 디지털논리시스템 구성)

  • Park, Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1773-1778
    • /
    • 2006
  • This paper propose the method of constructing the Digital Logic Systems based on the Improved Automatic Theorem Proving Techniques(IATP) over Finite Fields. The proposed method is as following. First, we discuss the background and the important mathematical properties for Finite Fields. Also, we discuss the concepts of the Automatic Theorem Proving Techniques(ATP) including the syntactic method and semantic method, and discuss the basic properties for the Alf. In this step, we define several definitions of the IAIP, Table Pseudo Function Tab and Equal. Next, we propose the T-gate as Building Block(BB) and describe the mathematical representation for the notation of T-gate. Then we discuss the important properties for the T-gate. Also, we propose the several relationships that are Identity relationship, Constant relationship, Tautology relationship and Mod R cyclic relationship. Then we propose Mod R negation gate and the manipulation of the don't care conditions. Finally, we propose the algorithm for the constructing the method of the digital logic systems over finite fields. The proposed method is more efficiency and regularity than my other earlier methods. Thet we prospect the future research and prospects.

Modeling of internal wave generation near a shelf slope by ocean finite element method

  • Lee, Kwi-Joo;Joa, Soon-Won;Eom, Ki-Chang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.1
    • /
    • pp.38-43
    • /
    • 2006
  • The 3-D modeling of ocean finite element method(OFEM) using $k-{\varepsilon}$ turbulent model and tetrahedron grids has been used to investigate the internal wave generation during the expansion of the deep water from the open sea to the shelf with a simple shape, which can be widely used in the fields of submarine development, ocean environment and meteorology, etc. In this paper, the detailed configuration of internal wave with its length and height and also the distribution of salinity and turbulent kinematic energy, etc. were derived. It is hoped that this OFEM method can be successfully applied to the numerical calculation of internal wave for and the oceanographic problems (tidal flows around underwater hill, plateau, Georges Bank, etc.) and ocean engineering problems(flow past artificial sea reefs) in future.

Switching Function Implementation based on Graph (그래프에 기초한 스위칭함수 구현)

  • Park, Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1965-1970
    • /
    • 2011
  • This paper proposes the method of switching function implementation using switching function extraction based on graph over finite fields. After we deduce the matrix equation from path number of directional graph, we propose the switching function circuit algorithm, also we propose the code assignment algorithm for nodes which is satisfied the directional graph characteristics with designed circuits. We can implement more optimal switching function compare with former algorithm, also we can design the switching function circuit which have any natural number path through the proposed switching function circuit implementation algorithms. Also the proposed switching function implementation using graph theory over finite fields have decrement number of input-output, circuit construction simplification, increment arithmetic speed and decrement cost etc.

Construction of Highly Performance Switching Circuit (고효율 스위칭회로)

  • Park, Chun-Myoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.88-93
    • /
    • 2016
  • This paper presents a method of constructing the highly performance switching circuit(HPSC) over finite fields. The proposed method is as following. First of all, we extract the input/output relationship of linear characteristics for the given digital switching functions, Next, we convert the input/output relationship to Directed Cyclic Graph using basic gates adder and coefficient multiplier that are defined by mathematical properties in finite fields. Also, we propose the new factorization method for matrix characteristics equation that represent the relationship of the input/output characteristics. The proposed method have properties of generalization and regularity. Also, the proposed method is possible to any prime number multiplication expression.

Upper Bound Analysis of Dynamic Buckling Phenomenon of Circular Tubes Considering Strain Rate Effect (변형률 속도를 고려한 원형 튜브의 동적 좌굴 현상의 상계 해석에 관한 연구)

  • Park, Chung-Hee;Ko, Youn-Ki;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.711-716
    • /
    • 2008
  • A circular tube undergoes bucking behavior when it is subjected to axial loading. An upper bound analysis can be an attractive approach to predict the buckling load and energy absorption efficiently. The upper bound analysis obtains the load or energy absorption by means of assumption of the kinematically admissible velocity fields. In order to obtain an accurate solution, kinematically admissible velocity fields should be defined by considering many factors such as geometrical parameters, dynamic effect, etc. In this study, experiments and finite element analyses are carried out for circular tubes with various dimensions and loading conditions. As a result, the kinematically admissible velocity field is newly proposed in order to consider various dimensions and the strain rate effect of material. The upper bound analysis with the suggested velocity field accurately estimates the mean load and energy absorption obtained from results of experiment and finite element analysis.

  • PDF

Design of the Multiplier in case of P=2 over the Finite Fields based on the Polynomial (다항식에 기초한 유한체상의 P=2인 경우의 곱셈기 설계)

  • Park, Chun-Myoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.70-75
    • /
    • 2016
  • This paper proposes the constructing method of effective multiplier based on the finite fields in case of P=2. The proposed multiplier is constructed by polynomial arithmetic part, mod F(${\alpha}$) part and modular arithmetic part. Also, each arithmetic parts can extend according to m because of it have modular structure, and it is adopted VLSI because of use AND gate and XOR gate only. The proposed multiplier is more compact, regularity, normalization and extensibility compare with earlier multiplier. Also, it is able to apply several fields in recent hot issue IoT configuration.

A Study on the Analysis of Magnetic Field in Magnetic Deflection Yoke Based on the Oblate Spheroidal coordinates (Oblate Spheroidal 좌표계를 이용한 자기 편형요크내의 자장 해석에 관한 연구)

  • Seo, Jeong-Doo;Yoo, Hyeong-Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1993
  • This paper presents the study on the magnetic field analysis of magnetid deflection yoke using integral equation method. An integral equation method is developed for the computer modeling of the magnetic fields produced by color CRT and T.V. deflection yoke. Deflection of electron beams using magnetic fields is applied in a variety of display instruments such as te.evision receivers, electron probe instruments, etc. The magnetic field is solved by dividing these into the finite elements in the whole domain : the saddle coil which deflects the electron heam horizontally, the toroidal coil which deflects it vertically, magnetic core which enhances the magnetid fields genterated by the both coils. Using oblate spheroidal coordinates, this paper has had an easier access to the shape of magnetic deflection yoke chasing the boundaries than other coordinates.

  • PDF

Effect of Random Geometry Perturbation on Acoustic Scattering (기하형상의 임의교란이 음향산란에 미치는 영향)

  • 주관정
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.117-123
    • /
    • 1992
  • In recent years, the finite element method has become one of the most popular numerical technique for obtaining solutions of engineering science problems. However, there exist various uncertainties in modeling the problems, such as the dimensions(geometry shape), the material properties, boundary conditions, etc. The consideration for the uncertainties inherent in the problems can be made by understanding the influences of uncertain parameters[1]. Determining the influences of uncertainties as statistical quantities using the standard finite element method requires enormous computing time, while the probabilistic finite element method is realized as an efficient scheme[2,3] yielding statistical solution with just a few direct computations. In this paper, a formulation of the probabilistic fluid-structure interaction problem accounting for the first order perturbation of geometric shape is derived, and especially probabilistical acoustic pressure scattering from the structure with surrounding fluid is focused on. In Section 2, governing equations for the fluid-structure problems are given. In Section 3, a finite element formulation, based on the functional, is presented. First order perturbation of geometric shape with randomness is incorporated into the finite element formulation in conjunction with discretization of the random fields in Section 4 and 5. Finally, the proposed formulation is applied to a acoustic pressure scattering problem from an infinitely long cylindrical shell structure with randomness of radial perturbation.

  • PDF

A Numerical Study on the Triboelectrostatic Separation of PVC Materials From Mixed Plastics for Waste Plastic Recycling

  • Ha, Man-Yeong;Jeon, Chung-Hwan;Park, Doo-Seong;Park, Hae-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1485-1495
    • /
    • 2003
  • We investigate the triboelectrostatic separation of polyvinylchloride (PVC) from mixed plastics in the laboratory scale triboelectrostatic separation system. The flow and electric fields in the precipitator are obtained from the numerical solution of finite volume method. Using these flow and electric fields, we solved the particle motion equation considering the inertia, drag, gravity and electrostatic forces acted on the particles. The particle trajectories are obtained using a Lagrangian method as a function of different important variables such as Reynolds number, Stokes number, electrostatic force, electric charge and electric field distribution, inclined angle of plane electrodes, particle rebounding, particle charge decay rate after impact on the electrode surface, etc., in order to determine the optimal design conditions. The present predicted results for the cumulative yield represent well the experimental ones.