• 제목/요약/키워드: Finite element method analysis

검색결과 9,677건 처리시간 0.037초

유한요소법에 의한 항만 정온도의 수치모의 (The Numerical Simulation of Harbor Calmness by Finite Element Method)

  • 김남형;허영택
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.22-26
    • /
    • 2002
  • In this paper, a finite element method is applied to the numerical calculation of the harbor calmness. The mild stop equation as the basic equation is used. The key of this model is that the bottom friction and boundary absorption are imposed. A numerical result is presented and compared with the results obtained from the other numerical analysis. These results are in very well agreement. This method calculating the calmness can be broadly utilized making the new design of harbor and fishing port in the future.

고속전철 객차를 위한 유한요소모델링 및 모드합성기법의 개발 (The Development of a finite-Element Modelling and Component Mode Synthesis Method for High-Speed railway Passenger Cars)

  • 장경진;김홍준;이상민;박영필
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.233-240
    • /
    • 1998
  • In the design of the high-speed railway vehicles of low noise and vibration characteristics, it is desirable to develop efficient and systematic procedures for analyzing large structures. In this paper, some finite-element modelling techniques and an efficient analytical method are proposed for this purpose. The analytical method is based on substructuring approach such as a free-interface method and a generalized synthesis algorithm. In final, the proposed approaches are applied to the finite-element modelling, modal analysis and subsequent model updating procedures of the high-speed railway intermediate trailers.

  • PDF

정적 외연적 유한요소법을 이용한 비드공정해석 (The Analysis of Draw-bead Process by Using Static-explicit Finite Element Method)

  • 정동원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.604-609
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

상용 유한요소 프로그램에 기초한 댐 구조물의 신뢰성해석 (Commercial Finite Element Program-based Reliability Analysis of Dam Structures)

  • 허정원;이정학
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 2003
  • A hybrid structural reliability analysis method that integrates a commercial finite element program and a reliability analysis algorithm is proposed to estimate the safety of real structures in this paper. Since finite element method (FEM) is most commonly and widely used in the analysis and design practice of real structures, it appears to be necessary to use general FEM program in the structural reliability analysis. In this case, simple conventional reliability methods cannot be used because the limit state function can only be expressed in an algorithmic form. The response surface method(RSM)-based reliability algorithm with the first-order reliability method (FORM) found to be ideal in this respect and is used in this paper. The intention of use of RSM is to develop, albeit approximately, an explicit expression of the limit state function for real structures. The applicability of the proposed method to real structures is examined with help of the example in consideration of a concrete dam. Both the strength and serviceability limit states are considered in this example.

  • PDF

유한요소법을 이용한 레이저 표면경화처리 공정변수의 민감도 해석 (Sensitivity Analysis of Processing Parameters for the Laser Surface Hardening Treatment by Using the Finite Element Method)

  • 이세환;양영수
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.228-234
    • /
    • 2001
  • A methodology is developed and used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed to decide the more effective laser input parameters for laser surface hardening treatment is considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method is applied to the sensitivity analysis. The interesting processing parameters are taken as the laser scan velocity and laser beam radius ( $r_{ b}$), and the sensitivities of the temperature T versus v and $r_{b}$ are analyzed. These sensitivity results are obtained with another parameters fixed. To verify the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis are compared with the experimental ones.nes.

  • PDF

재생커널입자법을 이용한 체적성형공정의 해석 (Analysis of Bulk Metal Forming Process by Reproducing Kernel Particle Method)

  • 한규택
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.21-26
    • /
    • 2009
  • The finite element analysis of metal forming processes often fails because of severe mesh distortion at large deformation. As the concept of meshless methods, only nodal point data are used for modeling and solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This computational methods reduces time-consuming model generation and refinement effort. It provides a higher rate of convergence than the conventional finite element methods. The displacement shape functions are constructed by the reproducing kernel approximation that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to verify the performance of meshless method for metal forming analysis.

  • PDF

2차원 동적 진동문제의 공간-시간 유한요소법 적용 (An Application of Space and Time Finite Element Method for Two-Dimensional Transient Vibration)

  • 김치경
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.143-149
    • /
    • 2006
  • 본 논문은 2차원 동적 진동문제를 공간-시간 유한요소법으로 해석하고 있다. 공간-시간 유한요소법은 공간만 분할하는 재래식 유한요소해석에 비해 보다 해를 빠르고 쉽게 얻을 수 있다. 상대적으로 큰 시간간격에 대해서 공간과 시간을 동시에 분할하는 공간-시간 유한요소 근사법을 제시한다. 가중잔차법으로 공간-시간 영역에 대해 유한요소법을 정식화하였으며 선형 사변형 공간-시간 유한요소를 선택하여 해의 안정성에 관하여 언급하였다. 일반적 동적문제에서는 상대적인 큰 시간간격으로 인하여 해의 불안정을 야기 시키고 있으나 본 연구에서는 수치의 안정성을 보여주고 있다. 비구조 공간-시간 유한요소법은 재래식 수치해석에서 흔히 발생하는 해의 불안정성에 대한 결점을 보완함은 물론 효과적인 계산방법을 지니고 있다. 이 방법의 효율성을 위해 수치예제들을 제시하였다.

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

ANALYSIS OF THE FIT IN THE IMPLANT PROSTHESIS USING A LASER DISPLACEMENT METER AND THREE-DIMENSIONAL FINITE ELEMENT METHOD

  • Kwon Ho-Beom;Kim Yung-Soo;Kim Chang-Whe
    • 대한치과보철학회지
    • /
    • 제39권6호
    • /
    • pp.611-624
    • /
    • 2001
  • A precise fit of the implant prosthesis is one of the most important factors in preventing mechanical complications. To analyze the degree of the misfit of implant prosthesis, a modal testing experiment was accomplished. And. to interpret the modal testing analysis mathematically, three-dimensional finite element models were established. In the experimental modal testing analysis, with a laser displacement meter, FFT analyzer, impact hammer, etc., natural frequencies of the models with various degree of prosthesis fit were determined after the frequency response function were calculated. In the finite element analysis, the natural frequencies and mode shapes of the models which simulated those of experimental modal testing were computed. The results were as follows: 1. Natural frequencies of the prosthesis-abutment were related to the contact state between components. 2. In the modal testing experiment, the natural frequencies increased from $50{\mu}m$ to $200{\mu}m$ gap and reached a plateau. 3. In the finite element analysis, the natural frequencies decreased gradually according to the in crease of the gap size. 4. In the finite element analysis, the mode shapes of model 1 with misfitting prosthesis showed different patterns from those without misfitting prosthesis. 5. The devices including a laser displacement meter used in this study were useful for measuring the natural frequencies of an implant prosthesis which had various degrees of fit.

  • PDF

A FINITE ELEMENT SOLUTION FOR THE CONSERVATION FORM OF BBM-BURGERS' EQUATION

  • Ning, Yang;Sun, Mingzhe;Piao, Guangri
    • East Asian mathematical journal
    • /
    • 제33권5호
    • /
    • pp.495-509
    • /
    • 2017
  • With the accuracy of the nonlinearity guaranteed, plenty of time and large memory space are needed when we solve the finite element numerical solution of nonlinear partial differential equations. In this paper, we use the Group Element Method (GEM) to deal with the non-linearity of the BBM-Burgers Equation with Conservation form and perform a numerical analysis for two particular initial-boundary value (the Dirichlet boundary conditions and Neumann-Dirichlet boundary conditions) problems with the Finite Element Method (FEM). Some numerical experiments are performed to analyze the error between the exact solution and the FEM solution in MATLAB.