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A FINITE ELEMENT SOLUTION FOR THE CONSERVATION

FORM OF BBM-BURGERS’ EQUATION

Yang Ning, Mingzhe Sun, and Guangri Piao∗

Abstract. With the accuracy of the nonlinearity guaranteed, plenty of

time and large memory space are needed when we solve the finite ele-

ment numerical solution of nonlinear partial differential equations. In this
paper, we use the Group Element Method (GEM) to deal with the non-

linearity of the BBM-Burgers Equation with Conservation form and per-

form a numerical analysis for two particular initial-boundary value (the
Dirichlet boundary conditions and Neumann-Dirichlet boundary condi-

tions) problems with the Finite Element Method (FEM). Some numerical

experiments are performed to analyze the error between the exact solution
and the FEM solution in MATLAB.

1. Introduction

In recent years, the nonlinear partial differential equation is widely used in
many fields to build mold for all kinds of physical phenomenon, such as fluid
mechanics, solid mechanics, geography, chemical physics, etc. To establish the
corresponding mathematical model for the physical phenomena, many nonlinear
partial differential equations arise at the historic moment, and BBM-Burgers
Equation with variable coefficients is one of the most famous ones. In this
parper, we mainly consider BBM-Burgers equation with respect to one dimen-
sion, which is defined as follows:

ut(t, x)− uxxt(t, x)− quxx(t, x) + u(t, x)ux(t, x) + ux(t, x) = f(t, x) (1.1)

This is a nonlinear parabolic PDE, containing both a convective term uux and
dissipative term uxx. Eq. (1.1) is the alternative regularized long-wave equation
proposed by Peregrine [3] and Benjamin et al. [24]. Eq. (1.1) features a balance
between nonlinear and dispersive effects, but takes no account of dissipation.
In the physical sense, Eq. (1.1) with the dissipative term quxx is proposed if
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the good predictive power is desired, such a problem arises in the phenomena
for both the bore propagation and the water waves. Since the dispersive effect
of (1.1) is the same as the Benjamin-Bona-Mahony equation

ut − uxxt + ux + uux = 0 (1.2)

while the dissipative effect is the same as the Burgers equation

ut − quxx + ux + uux = 0 (1.3)

we call (1.1) the BBM-Burgers equations, but it is proposed neither by Ben-
jamin, Bona, and Mahony nor by Burgers, see Mei [25].

For the mathematical theory and physical significance of the Eq. (1.1), (1.2),
and (1.3), we refer the reader to [3,7-8,13-14,24,28] and the references therein.
Numerical methods have been proposed by several researchers, based on either
finite differences [10,19-21,25], finite elements [4,11,15,22], or Adomian decom-
position scheme [5-6,12].

The main contribution of this article is to use GEM to deal with the non-
linearity of the BBM-Burgers Equation with Conservation form and perform
a numerical analysis for two particular initial-boundary value (the Dirichlet
boundary conditions and Neumann-Dirichlet boundary conditions) problems
with the Finite Element Method (FEM).

The rest of article is organized as follows, in Section 2, an introduction of
the Finite Element Method is established and a numerical analysis for two
particular initial-boundary value problems is performed with FEM. In Section
3, some numerical experiments are performed to analyze the error between the
exact solution and the FEM solution in MATLAB.

2. The Finite Element Method

The Finite Element Method (FEM) is a rather general numerical method
that is often used to approximate partial differential equations (PDEs). If the
PDE is time dependent, then the problem can be reduced to a system of ODEs
which can be numerically integrated by known techniques. In this paper we use
standard piecewise linear basis functions for our approximations. Therefore, we
divide the unit interval [0, 1] into N subintervals [xi, xi+1] of uniform length
h = 1

N where xi = ih for i = 0, · · · , N . On each interval the global basis
functions are defined by

φ0 (x) =

{
x1−x

h x ∈ [0, x1]
0 otherwise

for 1 ≤ i ≤ N − 1,

φi (x) =


x−xi−1

h x ∈ [xi−1, xi]
xi+1−x

h x ∈ [xi, xi+1]
0 otherwise
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and

φN (x) =

{x−xN−1

h x ∈ [xN−1, xN ]
0 otherwise

We form an approximation of u(t, x) in the space spanned by the piecewise
linear basis functions by setting

uN (t, x) =

N∑
j=0

αj (t)φj (x)

where αj (t) represents the nodal unknown value of u (t, xj) at the jth node at
time t.

The standard Finite Element approach yields a nonlinear time dependent
equation. We also take advantage of the Group Finite Element (GFE) method,
described by Fletcher [2]. This simplifies the nonlinear term so that one can
take advantage of grouping similar terms. The Burgers’ equation in conservation

form expresses the nonlinearity u (t, x)ux (t, x) as 1
2

[
u(t, x)

2
]
x

leading us to the

approximation

u(t, x)
2 ≈ uN (t, x)

2 ≈
N∑
j=0

αj(t)
2
φj (x)

This was shown in [1,9,16,23,26] to provide improved stability and computa-
tional efficiency since matrices do not need to be assembled at each time step.

In this paper, We consider BBM-Burgers equation in conservation form given
by

ut(t, x)− uxxt(t, x)− quxx(t, x) +
1

2

[
u(t, x)

2
]
x

+ ux(t, x) = f(t, x)

The forcing f is assumed to be at least L2 in space and time. We shall fo-
cus on two particular initial-boundary value problems. The first problem has
Dirichlet boundary conditions and the other has a Neumann-Dirichlet boundary
condition.

2.1. BBM-Burgers Equation with Dirichlet Boundary Conditions

Consider the first problem

ut(t, x) +
1

2

[
u(t, x)

2
]
x
− uxxt(t, x)− quxx(t, x) + ux(t, x) = f(t, x) (2.1)

where x ∈ [0, 1], t ∈ [0, tf ], the boundary conditions are given by

u(t, 0) = 0 u(t, 1) = 0

and the initial condition is
u (0, x) = u0 (x)

Multiplying both sides of (2.1) by a test function v(x) and integrating yields∫ 1

0

(
ut(t, x) +

1

2

[
u(t, x)

2
]
x

+ ux(t, x)

)
v(x)dx−

∫ 1

0

uxxt(t, x)v(x)dx
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−q
∫ 1

0

uxx(t, x)v(x)dx =

∫ 1

0

f(x)v(x)dx (2.2)

If v(x) is piecewise smooth, then v′ (x) ∈ L2 (0, 1) , we can apply integration by
parts to the second and the third term on the left, and take advantage of the
essential Dirichlet boundary conditions. Thus (2.2) becomes the weak form of
BBM-Burgers’ equation with Dirichlet boundary conditions given by∫ 1

0

(
ut (t, x) +

1

2

[
u(t, x)

2
]
x

+ u (t, x)

)
v (x)dx+

∫ 1

0

qux (t, x) vx (x)dx

+

∫ 1

0

uxt (t, x) vx (x)dx =

∫ 1

0

f (t, x) v (x) dx (2.3)

Note that (2.3) must hold for any piecewise smooth function v(x).
Using the approximation by piecewise linear basis functions we write u (t, x) ≈

uN (t, x) =
N∑
j=0

αj (t)φj (x) and using the group approximation uN (t, x)
2 ≈

N∑
j=0

αj(t)
2
φj (x). Since this identity holds for arbitrary piecewise smooth v(x),

for each i = 0, 1, ..., N , we can set v(x) = φi(x), and for all j, αj(t) does not
depend on x, we can move those terms outside. For each i = 0, 1, ..., N , the
equation (2.3) can finally be written as a system of N + 1 ODEs given by

(M + C)α̇ (t) +
1

2
B (α (t))α (t) + qCα (t) + B (α (t)) = F (t) (2.4)

whereMij =
∫ 1

0
φj (x)φi (x) dx, Cij =

∫ 1

0
φ′j (x)φ′j (x) dx and Fi (t) =

∫ 1

0
f (t, x)φi (x) dx,

i, j = 0, 1, ..., N , B (α (t)) is a matrix that depends on α (t).
Taking advantage of the Dirichlet boundary conditions we know α0 (t) and

αN (t) for all t. Hence we can eliminate these equations and reduce the size
of (2.4) from N + 1 to N − 1 equations by solving only for the internal nodes.
Thus the matrices M , C and B (α (t)) are given by

M =
h

6


4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4


[N−1×N−1]

C =
1

h


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


[N−1×N−1]
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and

B (α (t)) =


0 1

2α2 (t)
− 1

2α1 (t) 0 1
2α3 (t)

. . .
. . .

. . .

− 1
2αN−3 (t) 0 1

2αN−1 (t)
− 1

2αN−2 (t) 0


[N−1×N−1]

respectively.
During computation the term B (α (t))α (t) can be efficiently implemented

as

B (α (t))α (t) =


0 1

2
− 1

2 0 1
2

. . .
. . .

. . .

− 1
2 0 1

2
− 1

2 0


[N−1×N−1]


α1(t)

2

α2(t)
2

...

αN−2(t)
2

αN−1(t)
2


We also need to find the approximate initial condition u0(x) in terms of the basic

functions φi(x). Thus, we assume that u0 (x) ≈ u0N (x) =
N∑
j=0

αj (0)φj (x) and

note that ∫ 1

0

u0
N (x) dx =

∫ 1

0

u0 (x)v (x) dx (2.5)

Using the approximation u0
N (x) =

N∑
j=0

αj (0)φj (x) and enforcing the essential

boundary condition, for each i = 1, ..., N − 1, the equation (2.5) generates an
equation which can be written as the matrix equation

Mα(0) = G (2.6)

where M is the same as (2.4) and Gi =
∫ 1

0
u0(x)φi(x)dx. Consequently, α(0) =

M−1G.
Combining (2.4) and (2.6) we finally obtain the initial value ODE system

α̇ (t) = (M + C)−1[F (t)− 1

2
B (α (t))α (t)− qCα (t)−B (α (t))]

α(0) = M−1G

Here, α(t) = [α1(t), α2(t), ..., αN−1(t)]T .

2.2. BBM-Burgers Equation with Neumann-Dirichlet Boundary Con-
ditions

Now consider the second problem

ut(t, x) +
1

2

[
u(t, x)

2
]
x
− uxxt(t, x)− quxx(t, x) + ux(t, x) = f(t, x)
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where x ∈ [0, 1], t ∈ [0, tf ], the boundary conditions are given by

ux(t, 0) = δ ∈ R u(t, 1) = 0

and initial value given by

u (0, x) = u0 (x)

Again, multiply by a test function v(x) and integrating yields we obtain∫ 1

0

(
ut(t, x) +

1

2

[
u(t, x)

2
]
x

+ ux(t, x)

)
v(x)dx−

∫ 1

0

uxxt(t, x)v(x)dx

−q
∫ 1

0

uxx(t, x)v(x)dx =

∫ 1

0

f(x)v(x)dx (2.7)

Also, if v(x) is piecewise smooth, we can apply integration by parts on the
second term on the left. We know from the right essential Dirichlet boundary
condition that ux(t, 1)v(x) = 0 for all t and from the left boundary condition
that ux(t, 0) = δ. From (2.7) we obtain the weak form of Burgers’ equation
with Neumann-Dirichlet boundary conditions given by∫ 1

0

(
ut (t, x) +

1

2

[
u(t, x)

2
]
x

+ u (t, x)

)
v (x)dx+

∫ 1

0

qux (t, x) vx (x)dx

+

∫ 1

0

uxt (t, x) vx (x)dx+ qδv(0) =

∫ 1

0

f (t, x) v (x) dx (2.8)

for any piecewise smooth function v(x).
Using an approximation by piecewise linear basis functions we write u (t, x) =

N∑
j=0

αj (t)φj (x) and using the group approximation uN (t, x)
2 ≈

N∑
j=0

αj(t)
2
φj (x).

Since this holds for arbitrary piecewise smooth v(x), we let v(x) = φi(x) and for
all j, αj(t) does not depend on x, we can move those terms outside the integral.
For each i = 0, 1, ..., N , the equation (2.8) generates N + 1 equations and hence
we have a system of N + 1 ODEs given by

(M + C)α̇ (t) +
1

2
B (α (t))α (t) + q(D + Cα (t)) + B (α (t)) = F (t) (2.9)

whereMij =
∫ 1

0
φj (x)φi (x) dx, Cij =

∫ 1

0
φ′j (x)φ′j (x) dx, Dij = δ[1, 0, ..., 0]

T
and

Fi (t) =
∫ 1

0
f (t, x)φi (x) dx, i, j = 0, 1, ..., N , B (α (t)) is a matrix that depends

on α (t).
Taking advantage of the right Dirichlet boundary condition we know αN (t)

for all t. Hence we can eliminate this equation and reduce the size of (2.9) from
N+1 to N equations by solving only for the internal nodes. Hence, the [N×N ]
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matrices M ,C and β(α(t)) are given as

M =
h

6


2 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4


[N×2.4N ]

C =
1

h


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


[N×N ]

and

B (α (t)) =


− 1

2α0 (t) 1
2α1 (t)

− 1
2α0 (t) 0 1

2α2 (t)
. . .

. . .
. . .

− 1
2αN−3 (t) 0 1

2αN−1 (t)
− 1

2αN−2 (t) 0


[N×N ]

respectively. Again, note that during computation the term B(α(t)) is com-
puted by

B (α (t))α (t) =


− 1

2
1
2

− 1
2 0 1

2
. . .

. . .
. . .

− 1
2 0 1

2
− 1

2 0


[N×N ]


α0(t)

2

α1(t)
2

...

αN−2(t)
2

αN−1(t)
2


We also construct the initial condition u0(x) in terms of the basic functions

φi(x). Thus, as before we assume that u0 (x) ≈ u0
N (x) =

N∑
j=0

αj (0)φj (x) and

obtain ∫ 1

0

u0
N (x) dx =

∫ 1

0

u0 (x)v (x) dx (2.10)

Using the approximation u0
N (x) =

N∑
j=0

αj (0)φj (x) and enforcing the right

essential Dirichlet boundary condition for each i = 1, ..., N − 1, the equation
(2.10) generates an equation which can be written as the matrix equation

Mα(0) = G (2.11)

where M is the same as (2.9) and Gi =
∫ 1

0
u0(x)φi(x)dx. Hence, α(0) = M−1G.
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Combining (2.9) and (2.11) we finally obtain the initial value ODE system

α̇ (t) = (M + C)−1[F (t)− 1

2
B (α (t))α (t)− q(D + Cα (t))−B (α (t))]

α(0) = M−1G

Here, α(t) = [α0(t), α1(t), ..., αN−1(t)]T .

3. Numerical Experiments

Using finite elements we approximate the true Burgers’ equations by finite
dimensional ODE systems. We will solve these ODE systems in MATLAB to
obtain the numerical solutions. The Method of Manufactured Solutions (MMS)
is used to generate analytical solutions which are used to test convergence of the
finite element methods. The details of the method can be found in the paper by
Roache [18] or the book by Oberkampf [27]. Here we make a brief introduction
of an MMS example.

3.1. Brief Introduction of an MMS Example

Consider Burger’s equation operator given by

L[u(t, x)] := ut(t, x) +
1

2
[u(t, x)

2
]x − quxx(t, x)

We want ũ(t, x) to be our exact solution. Thus we apply the operator to ũ(t, x)
to obtain

L[ũ(t, x)] := ũt(t, x) +
1

2
[ũ(t, x)

2
]x − qũxx(t, x)

By setting the f(t, x) = L[ũ(t, x)], we guarantee that ũ(t, x) is an exact solution
to the modified equation

ut(t, x) +
1

2
[u(t, x)

2
]x − quxx(t, x) = f(t, x)

Here, we assume the exact solution is of the form

ũ(t, x) = h(t)r(x)

Then the forcing term has the form

f(x, t) =
d

dt
h(t)r(x) + h(t)

2 d

dx
r(x)− qh(t)

d2

dx2
r(x)

By comparing the approximate solution and the true solution we can determine
the error for a particular discretization level. The error is calculated in the L2

norm. In particular, if f(t, x) ∈ L2([0, T ] × [0, 1]; dt × dx), the norm ‖L2‖ is
given by

‖f‖L2 =

(∫ T

0

∫ 1

0

|f(t, x)|2dxdt

) 1
2
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Therefore the relative error is given by

Errrel(N) =

∥∥u− uN∥∥
L2

‖u‖L2

To evaluate the L2 norm we utilize a 3 point gauss quadrature in space and for
time we use the approximation∫ T

0

f(t)dt ≈
M∑
t=0

f(i)k

where k = T/M and M is the number of times steps.
As the mesh spacing hN = 1/N is refined, standard finite element theory

implies convergence to the true solution. If we assume the error for any mesh
spacing has the form eNi

= ChpNi
, where C is a constant that does not depend

on h, then we can calculate the observed order of convergence between two
discretizations by

ln
eNi

eNi+1

= p ln
hNi

hNi+1

→ p =
ln

eNi

eNi+1

ln
hNi

hNi+1

In the next section, we will verify the code using the MMS above. We present
several experiments by changing the parameter value for both the Dirichlet
boundary conditions and Neumann-Dirichlet boundary conditions problems.
We also test several of the built-in MATLAB ODE solvers for accuracy and
performance using the default settings.

3.2. Dirichlet Boundary Conditions Problem

Consider the problem with Dirichlet boundary conditions and exact solution
given by

u(t, x) = e−tsin(πx)

The initial condition is given by

u0(x) = sin(πx)

This meets the boundary conditions and the associated MMS forcing term is

f(t, x) = e−t(sin(πx)(−1− π2 + qπ2) + πcos(πx)(e−tsin(πx) + 1))

Table 1 shows the FEM Results for T = 10, Re = 100 and Dirichlet boundary
conditions with various parameter values and solvers. In general, ODE45 and
ODE23 are both accurate but requires a significant amount of time for a fine
mesh. We also see that ODE15s is very fast but the errors may actually grow
as the mesh is refined.

Sample plots of the exact solution, the FEM solution and errors are found
in Figures 1-3. In Figure 1 we compare the exact solution to the finite element
numerical approximation for 16 elements when q = 1/100, we note the visual
agreement between them. Figure 2 displays the error between the exact solution
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and the numerical solution. The global L2 error is less than 3 × 10−3 in time
and space. As shown in Figure 3, using N = 32 elements the discretization
error is small and our computed numerical solution matches the exact analytic
solution.

MATLAB Solver Number of Elements Solver time Relerr Order

ODE45

N = 8 4.9629 3.650× 10−2 -
N = 16 10.7906 9.600× 10−3 1.927
N = 32 40.1462 2.400× 10−3 2.000
N = 64 200.406 5.953× 10−4 2.011
N = 128 1407.40 1.449× 10−4 2.039

ODE23

N = 8 23.7733 3.640× 10−2 -
N = 16 36.657 9.400× 10−3 1.953
N = 32 115.6316 2.300× 10−3 2.031
N = 64 457.4316 4.849× 10−4 2.264
N = 128 2138.30 7.063× 10−5 2.779

ODE15s

N = 8 5.8159 3.680× 10−2 -
N = 16 6.0075 9.800× 10−3 1.909
N = 32 17.3624 1.300× 10−3 2.914
N = 64 49.333 1.800× 10−3 -0.469
N = 128 153.38 2.200× 10−3 -0.290

Table 1: FEM Results for T = 10, Re = 100 and Dirichlet boundary
conditions

(a) Exact solution (b) FEM solution
Figure 1: Exact solution and FEM using ODE23 for N = 32; Re = 100 and

Dirichlet boundary conditions
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Figure 2: FEM error using ODE23 for N = 32; Re = 100 and Dirichlet
boundary conditions

Figure 3: Cross section of exact and FEM using ODE23 for N = 32;
Re = 100 and Dirichlet boundary conditions

3.3. Neumann-Dirichlet Boundary Conditions Problem

Consider the problem with Neumann-Dirichlet boundary conditions, δ = 0
and exact solution given by

u(t, x) = e−t(1− x2)

The initial condition is given by

u0(x) = (1− x2)

This meets the boundary conditions and the associated MMS forcing term is

f(t, x) = e−t(x2 − 2x− 3 + 2q + 2e−t(x3 − x))
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Results for various parameter values and solvers are found in Table 2. We
see again that for all values of q, ODE45 produced convergent solutions as the
spatial mesh is refined. However the errors of ODE23 actually grow as the mesh
was refined from N = 64 to N = 128. ODE15s also demonstrate monotone
convergence, and the observed order of accuracy is higher than ODE45.

Sample plots of the exact solution, the FEM solution and errors are found
in Figures 4-6. In Figure 4 we compare the exact solution to the finite element
numerical approximation. Figure 5 clearly shows that the global error for the
Neumann-Dirichlet boundary condition problem is larger than for the Dirichlet
boundary condition problem. In Figure 6, the discretization error is small and
our computed numerical solution matches the exact analytic solution.

MATLAB Solver Number of Elements Solver time Relerr Order

ODE45

N = 8 5.3959 7.230× 10−2 -
N = 16 14.9935 1.750× 10−2 2.047
N = 32 44.3118 4.100× 10−3 2.094
N = 64 212.3113 8.205× 10−4 2.321
N = 128 1866.10 1.823× 10−4 2.171

ODE23

N = 8 3.9322 6.990× 10−2 -
N = 16 43.0017 1.520× 10−2 2.201
N = 32 86.1277 2.000× 10−3 2.926
N = 64 233.0048 1.600× 10−3 0.322
N = 128 1058.80 2.300× 10−3 -0.524

ODE15s

N = 8 3.3187 7.820× 10−2 -
N = 16 6.5455 2.320× 10−2 1.753
N = 32 15.9258 9.800× 10−3 1.243
N = 64 38.3093 6.500× 10−3 0.592
N = 128 119.3554 5.700× 10−3 0.189

Table 2: FEM Results for T = 10, Re = 100 and Neumann-Dirichlet
boundary conditions

(a) Exact solution (b) FEM solution
Figure 1: Exact solution and FEM using ODE23 for N = 32; Re = 100 and

Dirichlet boundary conditions
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Figure 5: FEM error using ODE45 for N = 32;Re = 100 and
Neumann-Dirichlet boundary conditions

Figure 6: Cross section of exact and FEM using ODE45 for N = 32;
Re = 100 and Neumann-Dirichlet boundary conditions

In conclusion, the motivation for this research is to demonstrate computa-
tional tools that can be used for design, optimization and control for PDE
systems over a large parameter range. As outlined in the introduction, BBM-
Burgers equation is a 2nd order nonlinear PDE model that approximates the
dynamics of the Navier-Stokes system. Based on the successful previous re-
sults [21-23, 25] we used the GFE method which reduces the computational
complexity of the non-linear term while maintaining accuracy. Thus, whenever
applicable, we recommend the GFE over the standard FEM as a simplifying
computational tool for high-fidelity simulations.
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